
Manual

Structure of the repository

This repository contains data from three multi-electrode array recordings from marmoset retinas that were

stimulated with spatiotemporal white-noise patterns of light. The data accompany the manuscript by Zapp et al:

"Accelerated spike-triggered non-negative matrix factorization with hyperparameter tuning reveals differences

and alignments among ganglion cell subunit mosaics in the primate retina". Each directory comprises one

recording session and is named by recording date and an identifier for right or left eye,

YYYYMMDD_MEATYPE_EYE_RETINALREGION. We used internal specifications for indicating the retinal

region (e.g., i1 for inferior, s3 for superior). Each directory comes with a file named expdata.json, containing

general experiment information, and with one or several directories for each stimulus recording, containing the

following files.

• parameters.json: contains stimulus-specific parameters

• frametimes.txt: contains the timestamps at which the stimulus changed, or “frame times”

• spiketimes_cell*.txt: contains the timestamps of spikes, or “spike times”. One file for each spike-sorted

unit, or “cell”.

The files expdata.json and parameters.json are of the file format JSON that is both easily parseable but also

human-readable in a text editor. The timestamp files are conventional TXT files where each line is one timestamp

in seconds counting from the start of the stimulus recording. The choice of formats allows inspection of all files

without complex loading routines.

One experiment directory (20180726_60MEA_left_33) additionally contains the file movie0000.h5. This HDF5

file contains the stimulus of a natural scene.

1 General experiment information (“expdata.json”)

The file contains the following variables:

animal Information on the animal, including sex, age in years, and which region that the

recorded retina piece stems from.

array Information on the multi-electrode array, including the type, number of electrodes, their

diameter, and the inter-electrode distance in meters.

fs Recording sampling rate in Hz.

projector Information on the light projection system, including the screen refresh rate, screen

display delay, mean light level, screen size in pixels, and the pixel size on the retina in

meters.

2 Raw spike times, stimulus details and reconstruction

The retinal ganglion cell responses to visual stimulation are represented with raw spike times and stimulus frame

times. Spike times were extracted with a Kilosort-based algorithm from the multi-electrode-array recorded data

and stored in seconds in individual files for each spike-sorted unit named with a unique cell identifier.

To align recorded spike times with stimulus presentation, we also recorded pulses that indicate when a new

stimulus appears on the screen. The times of these pulses, or frame times, are represented here in seconds. How

the pulse frequency aids in stimulus reconstruction is specific to each stimulus and described in the file

parameters.json. This file contains the following stimulus-specific parameters (written in the following

paragraphs in block letters) that are necessary for the stimulus reconstruction.

2.1 FrozenNoise

The spatiotemporal white-noise stimulus contained in this repository is called FrozenNoise. The stimulus consists

of black and white squares (100% contrast). Each square was randomly assigned to black (-1) or white (1) with a

probability of 50% each, and had a side length of stixelwidth pixels. Spatial patterns were updated with a

frequency of fps/Nblinks, where fps is the monitor refresh rate which is, here, equivalent to the provided pulse

frequency. For screen updates for Nblinks=3 refresh rates, we therefore used every third frame time to recreate

when a new white-noise image appeared.

To obtain the number of spikes per white-noise image, the spike times can be binned by the frame times using the

provided Python script binspikes.py. Example usage of the function:

from binspikes import binspikes
runningbin, frozenbin = binspikes('20220208_60pMEA_right_i1/FrozenNoise_1')

A fixed “frozen” white-noise sequence was repeated periodically between series of “running” white-noise

sequences. In particular, after RunningFrames, a number of FrozenFrames was presented with a fixed random-

number-generator seed secondseed. After each run of the fixed sequence, “running” presentations were resumed

with the last seed that was generated before the fixed sequence presentation. The “frozen noise” can be used as

held-out data for model testing.

Check the repository https://github.com/gollischlab/RecreateWhiteNoiseStimuliWithPython (for Python) or

alternatively https://github.com/gollischlab/RecreateWhiteNoiseStimuliWithMatlab (for MATLAB) for

reconstructing the frame sequence. Minimal usage example in Python, where p is a dictionary loaded from

parameters.json:

from retinawhitenoise import binarystimulus as stimulus

Create the 18-trials-long stimulus trial-by-trial in a loop
for stim in stimulus.recreate(p['seed'], (p['Nx'], p['Ny']), p['RunningFrames'], 18):
 pass
 # At each iteration 'stim' is a (p['Nx'], p['Ny'], p['RunningFrames']) array

Some of the recording sessions contain several directories with stimulus parameter and timestamp files. These are

separate stimulus recordings of the same recording session. In order to analyze the data together, binned spikes

and recreated stimuli of the subdirectories can be concatenated.

2.2 Checkerflickerplusmovie

Unlike the other two, the recording session 20180726_60MEA_left_33 contains a stimulus of the type

checkerflickerplusmovie which is an extension of the FrozenNoise stimulus. It contains an additional movie

repeatedly presented after the “frozen noise” presentations, that is, after RunningFrames and FrozenFrames, a

fixed number of MovieFrames was presented. The movie stimulus is included in the repository in the file

movie0000.h5 represented as an array with the dimensions screen_x × screen_y × num_frames, containing

contrast values between -1 and 1 for the screen dimensions for all movie frames. The movie consists of a still

image of a gray scale natural scene from the DOVES database, shifted across the screen simulating eye fixations.

van der Linde, I., Rajashekar, U., Bovik, A.C., Cormack, L.K. (2009). „DOVES: A database of visual eye

movements”. Spatial Vision, 22(2): 161-177. URL: http://live.ece.utexas.edu/research/doves

https://github.com/gollischlab/RecreateWhiteNoiseStimuliWithPython
https://github.com/gollischlab/RecreateWhiteNoiseStimuliWithMatlab
http://live.ece.utexas.edu/research/doves

