
Manual

Structure of the repository

This repository contains data from 18 multi-electrode array recordings from mouse and marmoset retinas that

were stimulated with different patterns of light. The data accompany the manuscript by Karamanlis et al:

"Natural stimuli drive concerted nonlinear responses in populations of retinal ganglion cells". Each .rar file

comprises one recording session and is named by recording date and an identifier for right or left eye,

YYYYMMDD_MEATYPE_SPECIES_EYE_RETINALREGION.rar. For mouse recordings, the retinal region

is either “half_dorsal” or “half_ventral”, indicating the corresponding half of the retina that was used. For

marmoset recordings we used internal specifications for indicating retinal region (e.g., n1 comes from the nasal

retina, s3 from the superior). Each .rar file contains the following Matlab files:

• expdata.mat: contains general experiment information.

• STIMULUS_data.mat: contains stimulus-specific data from the corresponding session (can be more

than one); STIMULUS here is a placeholder for the name of the particular stimulus.

Details of the five applied stimuli and their reconstruction can be found in Section 2.

1 General experiment information (“expdata”)

The file contains the following variables:

animal ‘mouse’ or ‘marmoset’.

array Structure containing a type specifier (array.type) of the recording device, number of

electrodes (array.nelectrodes), their diameter (array.diamelectrode), and the inter-

electrode distance (array.distelectrodes) in meters.

units An Nunits x 4 array containing information about each sorted unit (with Nunits being

the number of sorted units, i.e., ganglion cells). Column 1: Kilosort ID, Column 2:

number of the electrode (reference electrode) on the array with the highest amplitude

for the unit, Column 3: unit ID of the units with the same reference electrode,

Column 4: spike-sorting quality noted during manual curation (1 down to 3).

fs Recording sampling rate in Hz.

projector Structure containing information about the light projection system, including the

screen refresh rate, size in pixels, and the pixel size on the retina in meters.

typelabels Labels with names of the four ganglion cell types identified in the recordings.

cellclus_id Ganglion cell type assignment, containing labels of 0 to 4, indicating the types defined

in “typelabels” (0 stands for unclassified).

2 Raw spikes, stimulus details and reconstruction (“STIMULUS_data”)

All stimulus-data files contain similar types of structures that hold raw spike times and stimulus frame times.

The spike responses of retinal ganglion cells to visual stimuli were extracted with a Kilosort-based algorithm

from the multielectrode-array recorded data. The array spiketimes contains spike times of each spike-sorted

unit. The first column contains the sorted timestamps (in samples, corresponding to the recording sampling rate

fs specified in “expdata.mat”) of all detected spikes, and the second column their assignment to a unit in the

recording (matching the row number of the array units in “expdata.mat”).

To align recorded spike times with stimulus presentation, we also recorded square pulses that indicate when a

new stimulus appears on (or disappears from) the screen. These pulses last as long as a single frame of the

monitor (e.g., 1/85 s for an 85-Hz refresh rate). The pulse onsets and offsets were saved (in samples) in two

different variables: fonsets and foffsets. The frequency and significance of the pulses are stimulus-

specific, with information given below in the explanations of the individual stimuli.

Stimulus-specific parameters were saved in the stimPara structure. These parameters are necessary for the

reconstruction of the presented stimulus.

Five types of visual stimuli were used to characterize and analyze the responses of retinal ganglion cells. The

STIMULUS part of the file name contains the identifier for each type.

1) Receptive fields were determined from responses to a spatio-temporal white-noise stimulus (stimulus

id: frozencheckerflicker).

2) Responses to natural movies made from combining natural images with gaze data (stimulus id:

fixationmovie).

3) Responses to flashed natural images (stimulus id: imagesequence).

4) For fitting subunit grid models to data, we presented a flashed sequence of gratings with varying spatial

frequencies, orientations, and phases (stimulus id: gratingflashes).

5) For fitting subunit grid models with temporal dynamics, we presented gratings in a rapid succession

(stimulus id: gratingflicker).

2.1 White noise (“frozencheckerflicker_data”)

A spatio-temporal white-noise stimulus of black and white squares (100% contrast) was used to estimate a cell’s

receptive field. Each square was randomly assigned to black (0) or white (1) with a probability of 50% each, and

had a side length of stimPara.stixelwidth pixels. Spatial patterns were updated with a frequency of

fps/stimPara.Nblinks, where fps is the monitor refresh rate. Frame pulses were always delivered with

a frequency of fps/2. To cover screen updates for stimPara.Nblinks=1 refresh rates, we therefore used

both pulse onsets and offsets to recreate the frame timings when a new white-noise image appeared. The

spikesbin array contains spike count data already binned at the stimulus update rate to facilitate analyses.

A fixed white-noise sequence was repeated periodically between series of “running” white-noise sequences. In

particular, after stimPara.RunningFrames, a number of stimPara.FrozenFrames was presented

with a fixed random-number-generator seed stimPara.secondseed. After each run of the fixed sequence,

“running” presentations were resumed with the last seed that was generated before the fixed sequence

presentation.

Check the repository https://github.com/gollischlab/RecreateWhiteNoiseStimuliWithMatlab for reconstructing

the frame sequence. Example usage of repository function:

stimulus = recreateBinaryWhiteNoiseStimulus(stimPara.Nx, stimPara.Ny,

Nframes, stimPara.seed)

The arrays spaceVecX and spaceVecY give the spatial coordinates (in monitor pixels) of the center of each

stimulus tile.

2.2 Natural movies (“fixationmovie_data”)

Movie frames were updated with the refresh rate of the monitor (fps). Frame pulses were always delivered

with a frequency of fps/2. Thus, both pulse onsets and offsets are needed to recreate the frame timings.

A fixed movie sequence was repeated periodically between series of “running” movie sequences. After

stimPara.FrozenFixations, a number of stimPara.RunningFixations was presented. After

each run of the running sequence, the fixed movie sequence was repeated.

The spikesbin array contains spike count data binned already at the stimulus update rate. Here, these spike

counts are reorganized into frozenbin and runningbin arrays, with dimensions of Ncells x Nframes x

Ntrials, where Nframes is either the number of fixed or running frames.

The images used for the fixed sequence are contained in frozenImages, and for the running in

runningImages. (Note that the coordinates of images are in matrix convention of rows x columns and that

the rows correspond to the y coordinate on the screen, top to bottom, and the columns to the x coordinate, left to

right.) In each frame, the images were shifted based on gaze data. The images presented at each frame and the

corresponding shifts are saved in the frozenfixations and runningfixations arrays.

https://github.com/gollischlab/RecreateWhiteNoiseStimuliWithMatlab

frozenfixations is a 3 x Nframes array, where Nframes is the number of frames in the “frozen” (repeated)

movie sequence. runningfixations is a 3 x Nframes x Ntrials array, where Nframes is the number of

frames in the “running” (non-repeated) sequence and Ntrials is the number of those presented sequences. The

first dimension of both arrays contains three numbers: the image ID (1 in frozenfixations corresponds to

the first image in frozenImages), and the x- and y-position of the image that is currently on the center of the

screen. These positions specify a pixel of the image (starting the count with 1,1 as the pixel in the top left

corner), that is then displayed at the center of the screen, e.g., at pixel (400, 300) for a screen of 800 x- and 600

y-pixels.

To reconstruct the actual frames that were presented to the retina (blockstimulus), use the following

function:

blockstimulus = returnFixMovie(screensize, imageEnsemble, listfixations)

where screensize is the monitor size (always [600, 800] for our experiments, with number specifying the y-

and x-dimensions of the screen correspondingly).

2.3 Natural images (“imagesequence_data”)

All raw data (spike times, pulse onsets and offsets, stimulus parameters) are contained in the structure

rawdata. A series of flashed images was presented to the retina, interleaved with a gray screen. Every image

trial lasted for stimPara.trialduration frames and the image flash was presented between frames

stimPara.flashstart and stimPara.flashstop of that duration. stimPara.flashstart is

the first frame of the flash and stimPara.flashstop is the first frame of the gray screen afterwards.

Frame onsets mark the beginning of each image trial (e.g., for a trial duration of 85 and a refresh rate of 85 Hz,

there is a pulse every second). The images we presented are contained in the imageEnsemble array. Images

were flashed in the central stimPara.Nx x stimPara.Ny pixels of the screen, and their bottom left point

was in the same quadrant as the bottom left point of the screen. The exact image-screen correspondence can be

traced by using the spaceVecX and spaceVecY arrays, that give the screen pixels coordinates of each image

pixel. To display an example of a presented image in MATLAB, call imagesc(spaceVecX,

spaceVecY, imageEnsemble(:,:,1)).

We collected multiple trials for each image, by consecutively presenting different pseudo-randomly permuted

sequences of all images. In the beginning of each permutation sequence, a gray screen was presented. To extract

the image presentation sequence, run the Matlab script “findImage Order” in “stimulus_reconstruction”:

presentOrder = findImageOrder(Nimages, Npresentations, stimPara.nrepeats,

stimPara.seed)

Here, Npresentations can be read by the number of frame onsets, and Nimages corresponds to the num-

ber of images in imageEnsemble. The numbers in the presentOrder sequence correspond to the image

ids from the third dimension of imageEnsemble. presentOrder entries with 0 corresponds to blank

screens at the beginning of each permutation sequence.

We already organized the data in a way that presentOrder contains the image ID presented in each trial

(without the gray screen), and trialCounts contains the measured spike count during each image presenta-

tion for each unit.

2.4 Flashed gratings (“gratingflashes_data”)

The organization of flashed grating data is like the one of the natural images. All raw data (spike times, pulse

onsets and offsets, stimulus parameters) are contained in the rawdata structure. For some datasets, the

rawdata structure contains data from two sessions of flashed gratings within the same experiment.

A series of flashed gratings was presented to the retina. Every grating trial lasted for

stimPara.stimduration frames, and the flash was presented between frames

stimPara.flashstart and stimPara.flashstop of that duration. For this stimulus, frame pulses

were recorded for both the beginning and the end of each grating presentation. Thus, the number of values of

pulse onsets is double the number of grating presentations.

Each grating is specified by three parameters: spatial frequency (in px-1), orientation (in radians), and spatial

phase (in radians). These three parameters for each different grating are contained in the array stiminfo. To

reconstruct images of all presented gratings (stimmat) and obtain stiminfo for any parameter combination,

use:

[stimmat, stiminfo] = getGratingFlashStimulus(stimPara, spX, spY, bwflag)

where stimPara can be found in rawdata, spX and spY are also given and mark the values of spatial

coordinates for which the grating is calculated, and bwflag marks whether the grating is square-wave instead

of sinusoidal (set to False for all recordings). In some cases, gratings were presented over a smaller part of the

screen. Grating coordinates can be turned into image pixels using the spaceVecX and spaceVecY vectors

(similar to the images), given by following equations, where ypix is the y-dimension of the screen:

spaceVecX = spX + rawdata.stimPara.rmargin + 0.5

spaceVecY = ypix – (spY + rawdata.stimPara.bmargin + 0.5)

To extract the grating presentation sequence (similar to natural image presentation) use the following function:

presentOrder = orderGratingFlashes(Ngratings, Npresentations, stim-

Para.nrepeats, stimPara.seed)

We already organized the data in a way that presentOrder contains the grating ID presented in each trial

(which corresponds to a row number of stiminfo), and trialCounts contains the measured spike count

during each grating presentation for each unit.

2.5 Flickering gratings (“gratingflicker_data”)

We also presented sinusoidal gratings in a rapid succession. Several gratings (2000-3000) were pre-generated

and then presented to the retina in a pseudorandom order. Gratings presented can again be obtained using the

getGratingFlashStimulus function.

All raw data (spike times, pulse onsets and offsets, stimulus parameters) are contained in the rawdata

structure. For some datasets, the rawdata structure contains data from two sessions with flashed gratings

within the same experiment. Stimulus frames were updated with the refresh rate of the monitor (fps). Because

frame pulses were always recorded with a frequency of fps/2, both pulse onsets and offsets are needed to

recreate the frame timings. The spikesbin array contains spike count data binned already at the stimulus

update rate.

A fixed grating sequence was repeated periodically between series of “running” grating sequences. After a

number of stimPara.RunningFrames, a fixed sequence of stimPara.FrozenFrames was

presented. After each run of the fixed sequence, the running presentations were resumed. A single run of

running and frozen frames is a stimulus trial. To obtain the order of gratings presented, use:

currorder = orderGratingFlicker(Ngratings, seed, Npresent)

where seed is either stimPara.secondseed for the frozen sequence, or stimPara.seed for the

running sequence, and Npresent is either stimPara.FrozenFrames for the frozen sequence, or

stimPara.RunningFrames * Ntrials for the running sequence across all trials of stimulus

presentation (can be calculated from the numbers of presented frames).

We already organized running data in a way that stimorder contains the grating ID presented in each trial.

Because our temporal subunit grid models contain filters that are Nt frames long (e.g., Nt = 43), we further reor-

ganized stimorder into orderfit, which is an Nt x Nstimuli array. There are Ntrials*(Nrunningframes-

Nt+1) stimuli, which essentially describe a short sequence of gratings up to a particular time. For each stimulus,

we provide the corresponding spike count (for all cells) in the spikesfit array. We expressed temporal filters

in our models in a ten-vector basis, which we also include in the array ktbas.

