Data files. Each folder named MS04-MS09 contains data from 1 animal. Within the folders, .mat files contain 7 data vectors (1 for each electrode) and a time vector. Files are named for the type of stimulus that was applied and which limb it was applied to as per the legend.

Electrodes:

Position 1	Position $\mathbf{5}$
$R=$ right	$F=$ flexion
L = left	$E=$ Extension
	D $=$ dowel
Position 2-3	B $=$ brush
$H L=$ hindlimb	
$F L=$ forelimb	Position 6-7

Position 5

= flexion
E Extension
D = dowel
$B=$ brush

Data files. Each vector can be split into separate trials using the time stamps in the "comments.csv" file. See screenshot below. Time stamps are shown in column ' c ' and the corresponding names of each stimulus used to name the file are found in column ' d '. Time stamps are in seconds from the beginning of a recording block. Each '.mat' file contains approximately 10 recording trials. The file label corresponds to the stimulus type applied for trials contained in that file.
comments.csv

Position 4

$\mathrm{P}=$ proprioception
$\mathrm{T}=$ tactile

Position 6-7
01-10 = block number which includes approximately 10 trials

Position 8

$\mathrm{m}=$ move; the stimulus onset $r=$ return; the offset of a stimulus
Value
1×3018000 double
40000
1×3018000 double

B	C	D	E	F
3910	7.005625	RHLPF01m		
3890	10.985	RHLPF01r		
3911	11.81048	RHLPF01m		
3976	15.49428	RHLPF01r		
3912	16.43175	RHLPF01m		
3902	20.04543	RHLPF01r		
3913	20.98798	RHLPF01m		
3977	24.62113	RHLPF01r		
3914	25.60833	RHLPF01m		
3978	29.32885	RHLPF01r		
3915	30.31623	RHLPF01m		
3979	33.94985	RHLPF01r		
3916	$\xrightarrow{34.92233}$	RHLPF01m		
3980	38.5192	RHLPF01r		
3917	39.53615	RHLPF01m		
3981	43.18673	RHLPF01r		
3918	44.19383	RHLPF01m		
3982	47.62078	RHLPF01r		
3919	48.86533	RHLPF01m		
3983	52.26068	RHLPF01r		

WindowSet is a nested cell array. In the first layer there are 17×2 cells, pertaining to the 17 different window lengths we used to extract data from somatosensory signals. Column 1 contains the labels for each time window and the corresponding data is contained in column 2. "+Olag" indicates that the data was extracted from the onset of stimulus with 0 ms lag.

1	2	3
1 'parameters $20 \mathrm{~ms}+0$ lag'	160×2 celll	
'parameters 30ms +0lag'	160×2 cell	
'parameters 40ms +0lag'	160×2 cell	
'parameters $50 \mathrm{~ms}+0 \mathrm{lag}$ '	160×2 cell	
'parameters 60 ms +0lag'	160×2 cell	
'parameters $70 \mathrm{~ms}+0$ lag'	160×2 cell	
'parameters 80ms +0lag'	160×2 cell	
'parameters 90ms +0lag'	160×2 cell	
9 'parameters 100ms +0lag'	160×2 cell	
10 'parameters $110 \mathrm{~ms}+0$ lag'	160×2 cell	
11 'parameters 120ms +0lag'	160×2 cell	
12 'parameters 130ms +0lag'	160×2 cell	
13 'parameters $140 \mathrm{~ms}+$ Olag'	160×2 cell	
14 'parameters $150 \mathrm{~ms}+$ Olag'	160×2 cell	
15 'parameters 250ms +0lag'	160×2 cell	
16 'parameters $500 \mathrm{~ms}+01 \mathrm{lag}$ '	160×2 cell	
17 'parameters $1000 \mathrm{~ms}+$ Olag'	160×2 cell	
18		

The cell arrays with 160×2 cells, contain recordings from the 16 different stimulus conditions with 10 repeats each. The name for each stimulus condition is contained in column 1 and the data in column 2.

The data matrices have 212 rows. Rows 1-28 are each of the 28 input features extracted from each stimulus trial (number of columns), which were recorded from electrode 1 (e1). Only the first 22 of these features were used for analysis in our paper. The next 28 rows contains the same feature set extracted from signals recorded from electrode 2 (e2) and so on, up to electrode 7 (e7) finishing at row 196. Rows 197-212 are binary values. The row containing 1's indicates which stimulus type was applied which can be used for classification outputs.
The order of the input features for rows 1-196 and for stimulus types for the 16 rows (197-212) are shown below.

1 LF sum burst amps
2 LF max burst amps
3LF sum burst widths
4LF mean burst amp
5 LF burst count
6 HF spike count
7 HF mean width
8 HF spike amplitude
9 HF integral
10LF PSD $4-8 \mathrm{~Hz}$
11 LF PSD $8-13 \mathrm{~Hz}$
12 LF PSD $13-40 \mathrm{~Hz}$
13 LF PSD $40-80 \mathrm{~Hz}$
14 LF PSD $80-200 \mathrm{~Hz}$
15 HF PSD $200-600 \mathrm{~Hz}$
16 HF PSD $600-1000 \mathrm{~Hz}$
17 HF PSD $1000-1500 \mathrm{~Hz}$
18 HF PSD $1500-2000 \mathrm{~Hz}$
19 HF PSD $2000-2500 \mathrm{~Hz}$ 20 HF PSD $2500-3000 \mathrm{~Hz}$ 21 HF PSD $3000-3500 \mathrm{~Hz}$ 22 HF PSD $3500-4000 \mathrm{~Hz}$ 23 HF PSD 320 Hz 24 HF PSD 1030 Hz 25 HF PSD 1720 Hz 26 HF PSD 2200 Hz 27 HF PSD 2800 Hz

