Directed information exchange between cortical layers in V1 and V4 and its modulation by selective attention

Demetrio Ferro 060f711cc7 Update 'README.md' 2 months ago
Code aa987ef67d Upload files to 'Code' 2 months ago
Data ef1952188d Upload files to 'Data' 2 months ago
LICENSE 7f02438db9 Update 'LICENSE' 2 months ago
README.md 060f711cc7 Update 'README.md' 2 months ago
datacite.yml 3425e4ab4a Update 'datacite.yml' 2 months ago

README.md

V1-V4-LFPs-and-Visual-Attention

This repositoty contains electrophysiologcal Data symultaneously recorded in V1 and V4 during a selective visual attention task, and Code to access the data and retrieve metadata.

Ferro D, van Kempen J, Boyd M, Panzeri S, Thiele A. 2020. Directed information exchange between cortical layers in macaque V1 and V4 and its modulation by selective attention. bioRxiv. doi:10.1101/2020.06.09.142190

(... work in progress)

datacite.yml
Title Directed information exchange between cortical layers in macaque V1 and V4 and its modulation by selective attention
Authors Ferro,Demetrio;Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy; Center for Mind and Brain Sciences (CIMeC), University of Trento, Rovereto, Italy; Center for Brain and Cognition, and Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain;ORCID:0000-0001-2345-6789
van Kempen,Jochem;Biosciences Institute, Newcastle University, NE1 7RU, Newcastle upon Tyne, United Kingdom;ORCID:0000-0002-0211-9545
Boyd,Michael;Biosciences Institute, Newcastle University, NE1 7RU, Newcastle upon Tyne, United Kingdom
Panzeri,Stefano;Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy;ORCID:0000-0003-1700-8909
Thiele,Alexander;Biosciences Institute, Newcastle University, NE1 7RU, Newcastle upon Tyne, United Kingdom;ORCID:0000-0003-4894-0213
Description Achieving behavioral goals requires integration of sensory and cognitive\n information, across cortical laminae and cortical regions. How this \ncomputation is performed remains unknown. Using local field potential \nrecordings and spectrally resolved conditional Granger causality (cGC) \nanalysis, we mapped visual information flow, and its attentional \nmodulation, between cortical layers within and between macaque areas V1 \nand V4. Stimulus induced inter-laminar information flow within V1 \ndominated upwardly, channeling information towards supragranular \ncortico-cortical output layers. Within V4, information flow dominated \nfrom granular to supragranular layers, but interactions between \nsupragranular and infragranular layers dominated downwardly. \nLow-frequency across-area communication was stronger from V4 to V1, with\n little layer specificity. Gamma-band communication was stronger in the \nfeedforward V1 to V4 direction. Attention to the receptive field of V1 \ndecreased communication between all V1 layers, except for granular to \nsupragranular layers interactions. Communication within V4, and from V1 \nto V4, increased with attention across all frequencies. While \ncommunication from V4 to V1 was stronger in lower frequency bands (4-25 \nHz), attention modulated cGCs from V4 to V1 across all investigated \nfrequencies. Our data show that top down cognitive processes result in \nreduced communication within cortical areas, increased feedforward \ncommunication across all frequency bands and increased gamma band \nfeedback communication.
License Creative Commons Attribution-NonCommercial-ShareAlike-4.0 International (https://creativecommons.org/licenses/by-nc-sa/4.0/)
References Ferro, D., van Kempen, J., Boyd, M., Panzeri, S. and Thiele, A., 2020. \nDirected information exchange between cortical layers in macaque V1 and \nV4 and its modulation by selective attention. bioRxiv.Ferro, D., van Kempen, J., Boyd, M., Panzeri, S. and Thiele, A., 2020. \nDirected information exchange between cortical layers in macaque V1 and \nV4 and its modulation by selective attention. bioRxiv. https://doi.org/10.1101/2020.06.09.142190 [https://doi.org/10.1101/2020.06.09.142190] (IsSupplementTo)
Funding Funded by the Wellcome Trust [093104] (JvK, MB, AT), MRC [MR/P013031/1] (JvK, AT), NIH Brain Initiative [R01 NS108410] and [U19 NS107464U19] (SP) and Simons Foundation SFARI Explorer grant [602849] (SP).
Keywords Neuroscience
Visual Attention
Laminar circuitry
Resource Type Dataset