function [datac,datafit,Amps,freqs]=rmlinesmovingwinc(data,movingwin,tau,params,p,plt,f0) % fits significant sine waves to data (continuous data) using overlapping windows. % % Usage: [datac,datafit]=rmlinesmovingwinc(data,movingwin,tau,params,p,plt) % % Inputs: % Note that units of Fs, fpass have to be consistent. % data (data in [N,C] i.e. time x channels/trials or as a single vector) - required. % movingwin (in the form [window winstep] i.e length of moving % window and step size) % Note that units here have % to be consistent with % units of Fs - required % tau parameter controlling degree of smoothing for the amplitudes - we use the % function 1-1/(1+exp(-tau*(x-Noverlap/2)/Noverlap) in the region of overlap to smooth % the sinewaves across the overlap region. Noverlap is the number of points % in the overlap region. Increasing tau leads to greater overlap smoothing, % typically specifying tau~10 or higher is reasonable. tau=1 gives an almost % linear smoothing function. tau=100 gives a very steep sigmoidal. The default is tau=10. % params structure containing parameters - params has the % following fields: tapers, Fs, fpass, pad % tapers : precalculated tapers from dpss or in the one of the following % forms: % (1) A numeric vector [TW K] where TW is the % time-bandwidth product and K is the number of % tapers to be used (less than or equal to % 2TW-1). % (2) A numeric vector [W T p] where W is the % bandwidth, T is the duration of the data and p % is an integer such that 2TW-p tapers are used. In % this form there is no default i.e. to specify % the bandwidth, you have to specify T and p as % well. Note that the units of W and T have to be % consistent: if W is in Hz, T must be in seconds % and vice versa. Note that these units must also % be consistent with the units of params.Fs: W can % be in Hz if and only if params.Fs is in Hz. % The default is to use form 1 with TW=3 and K=5 % Note that T has to be equal to movingwin(1). % % Fs (sampling frequency) -- optional. Defaults to 1. % fpass (frequency band to be used in the calculation in the form % [fmin fmax])- optional. % Default all frequencies between 0 and Fs/2 % pad (padding factor for the FFT) - optional (can take values -1,0,1,2...). % -1 corresponds to no padding, 0 corresponds to padding % to the next highest power of 2 etc. % e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT % to 512 points, if pad=1, we pad to 1024 points etc. % Defaults to 0. % p (P-value to calculate error bars for) - optional. % Defaults to 0.05/Nwin where Nwin is length of window which % corresponds to a false detect probability of approximately 0.05. % plt (y/n for plot and no plot respectively) - default no % plot. % f0 frequencies at which you want to remove the % lines - if unspecified the program uses the f statistic % to determine appropriate lines. % % Outputs: % datafit (fitted sine waves) % datac (cleaned up data) if nargin < 2; error('Need data and window parameters'); end; if nargin < 4 || isempty(params); params=[]; end; if length(params.tapers)==3 & movingwin(1)~=params.tapers(2); error('Duration of data in params.tapers is inconsistent with movingwin(1), modify params.tapers(2) to proceed') end [tapers,pad,Fs,fpass,err,trialave,params]=getparams(params); % set defaults for params clear err trialave if nargin < 6; plt='n'; end; % % Window,overlap and frequency information % data=change_row_to_column(data); [N,C]=size(data); Nwin=round(Fs*movingwin(1)); % number of samples in window Nstep=round(movingwin(2)*Fs); % number of samples to step through Noverlap=Nwin-Nstep; % number of points in overlap % % Sigmoidal smoothing function % if nargin < 3 || isempty(tau); tau=10; end; % smoothing parameter for sigmoidal overlap function x=(1:Noverlap)'; smooth=1./(1+exp(-tau.*(x-Noverlap/2)/Noverlap)); % sigmoidal function smooth=repmat(smooth,[1 C]); % % Start the loop % if nargin < 5 || isempty(p); p=0.05/Nwin; end % default for p value if nargin < 7 || isempty(f0); f0=[]; end; % empty set default for f0 - uses F statistics to determine the frequencies params.tapers=dpsschk(tapers,Nwin,Fs); % check tapers winstart=1:Nstep:N-Nwin+1; nw=length(winstart); datafit=zeros(winstart(nw)+Nwin-1,C); Amps=cell(1,nw); freqs=cell(1,nw); for n=1:nw; indx=winstart(n):winstart(n)+Nwin-1; datawin=data(indx,:); [datafitwin,as,fs]=fitlinesc(datawin,params,p,'n',f0); Amps{n}=as; freqs{n}=fs; datafitwin0=datafitwin; if n>1; datafitwin(1:Noverlap,:)=smooth.*datafitwin(1:Noverlap,:)+(1-smooth).*datafitwin0(Nwin-Noverlap+1:Nwin,:);end; datafit(indx,:)=datafitwin; end; datac=data(1:size(datafit,1),:)-datafit; if strcmp(plt,'y'); [S,f]=mtspectrumsegc(data,movingwin(1),params); [Sc,fc]=mtspectrumsegc(datac,movingwin(1),params); plot(f,10*log10(S),fc,10*log10(Sc)); end;