function [Fval,A,f,sig,sd] = ftestc(data,params,p,plt) % computes the F-statistic for sine wave in locally-white noise (continuous data). % % [Fval,A,f,sig,sd] = ftestc(data,params,p,plt) % % Inputs: % data (data in [N,C] i.e. time x channels/trials or a single % vector) - required. % params structure containing parameters - params has the % following fields: tapers, Fs, fpass, pad % tapers : precalculated tapers from dpss or in the one of the following % forms: % (1) A numeric vector [TW K] where TW is the % time-bandwidth product and K is the number of % tapers to be used (less than or equal to % 2TW-1). % (2) A numeric vector [W T p] where W is the % bandwidth, T is the duration of the data and p % is an integer such that 2TW-p tapers are used. In % this form there is no default i.e. to specify % the bandwidth, you have to specify T and p as % well. Note that the units of W and T have to be % consistent: if W is in Hz, T must be in seconds % and vice versa. Note that these units must also % be consistent with the units of params.Fs: W can % be in Hz if and only if params.Fs is in Hz. % The default is to use form 1 with TW=3 and K=5 % % Fs (sampling frequency) -- optional. Defaults to 1. % fpass (frequency band to be used in the calculation in the form % [fmin fmax])- optional. % Default all frequencies between 0 and Fs/2 % pad (padding factor for the FFT) - optional (can take values -1,0,1,2...). % -1 corresponds to no padding, 0 corresponds to padding % to the next highest power of 2 etc. % e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT % to 512 points, if pad=1, we pad to 1024 points etc. % Defaults to 0. % p (P-value to calculate error bars for) - optional. % Defaults to 0.05/N where N is the number of samples which % corresponds to a false detect probability of approximately 0.05. % plt (y/n for plot and no plot respectively) % % Outputs: % Fval (F-statistic in frequency x channels/trials form) % A (Line amplitude for X in frequency x channels/trials form) % f (frequencies of evaluation) % sig (F distribution (1-p)% confidence level) % sd (standard deviation of the amplitude C) if nargin < 1; error('Need data'); end; if nargin < 2 || isempty(params); params=[]; end; [tapers,pad,Fs,fpass,err,trialave,params]=getparams(params); clear err trialave data=change_row_to_column(data); [N,C]=size(data); if nargin<3 || isempty(p);p=0.05/N;end; if nargin<4 || isempty(plt); plt='n';end; tapers=dpsschk(tapers,N,Fs); % calculate the tapers [N,K]=size(tapers); nfft=max(2^(nextpow2(N)+pad),N);% number of points in fft [f,findx]=getfgrid(Fs,nfft,fpass);% frequency grid to be returned % errorchk = 0; % set error checking to default (no errors calculated) % if nargout <= 3 % if called with 4 output arguments, activate error checking % errorchk = 0; % else % errorchk = 1; % end Kodd=1:2:K; Keven=2:2:K; J=mtfftc(data,tapers,nfft,Fs);% tapered fft of data - f x K x C Jp=J(findx,Kodd,:); % drop the even ffts and restrict fft to specified frequency grid - f x K x C tapers=tapers(:,:,ones(1,C)); % add channel indices to the tapers - t x K x C H0 = squeeze(sum(tapers(:,Kodd,:),1)); % calculate sum of tapers for even prolates - K x C if C==1;H0=H0';end; Nf=length(findx);% number of frequencies H0 = H0(:,:,ones(1,Nf)); % add frequency indices to H0 - K x C x f H0=permute(H0,[3 1 2]); % permute H0 to get dimensions to match those of Jp - f x K x C H0sq=sum(H0.*H0,2);% sum of squares of H0^2 across taper indices - f x C JpH0=sum(Jp.*squeeze(H0),2);% sum of the product of Jp and H0 across taper indices - f x C A=squeeze(JpH0./H0sq); % amplitudes for all frequencies and channels Kp=size(Jp,2); % number of even prolates Ap=A(:,:,ones(1,Kp)); % add the taper index to C Ap=permute(Ap,[1 3 2]); % permute indices to match those of H0 Jhat=Ap.*H0; % fitted value for the fft num=(K-1).*(abs(A).^2).*squeeze(H0sq);%numerator for F-statistic den=squeeze(sum(abs(Jp-Jhat).^2,2)+sum(abs(J(findx,Keven,:)).^2,2));% denominator for F-statistic Fval=num./den; % F-statisitic if nargout > 3 sig=finv(1-p,2,2*K-2); % F-distribution based 1-p% point var=den./(K*squeeze(H0sq)); % variance of amplitude sd=sqrt(var);% standard deviation of amplitude end; if nargout==0 || strcmp(plt,'y'); [S,f]=mtspectrumc(detrend(data),params);subplot(211); plot(f,10*log10(S));xlabel('frequency Hz'); ylabel('Spectrum dB'); subplot(212);plot(f,Fval); line(get(gca,'xlim'),[sig sig],'Color','r');xlabel('frequency Hz'); ylabel('F ratio'); end A=A*Fs;