function ellipse_t = fit_ellipse( x,y,plot_opt ) % % fit_ellipse - finds the best fit to an ellipse for the given set of points. % % Format: ellipse_t = fit_ellipse( x,y,axis_handle ) % % Input: x,y - a set of points in 2 column vectors. AT LEAST 5 points are needed ! % axis_handle - optional. a handle to an axis, at which the estimated ellipse % will be drawn along with it's axes % % Output: ellipse_t - structure that defines the best fit to an ellipse % a - sub axis (radius) of the X axis of the non-tilt ellipse % b - sub axis (radius) of the Y axis of the non-tilt ellipse % phi - orientation in radians of the ellipse (tilt) % X0 - center at the X axis of the non-tilt ellipse % Y0 - center at the Y axis of the non-tilt ellipse % X0_in - center at the X axis of the tilted ellipse % Y0_in - center at the Y axis of the tilted ellipse % long_axis - size of the long axis of the ellipse % short_axis - size of the short axis of the ellipse % status - status of detection of an ellipse % % Note: if an ellipse was not detected (but a parabola or hyperbola), then % an empty structure is returned % ===================================================================================== % Ellipse Fit using Least Squares criterion % ===================================================================================== % We will try to fit the best ellipse to the given measurements. the mathematical % representation of use will be the CONIC Equation of the Ellipse which is: % % Ellipse = a*x^2 + b*x*y + c*y^2 + d*x + e*y + f = 0 % % The fit-estimation method of use is the Least Squares method (without any weights) % The estimator is extracted from the following equations: % % g(x,y;A) := a*x^2 + b*x*y + c*y^2 + d*x + e*y = f % % where: % A - is the vector of parameters to be estimated (a,b,c,d,e) % x,y - is a single measurement % % We will define the cost function to be: % % Cost(A) := (g_c(x_c,y_c;A)-f_c)'*(g_c(x_c,y_c;A)-f_c) % = (X*A+f_c)'*(X*A+f_c) % = A'*X'*X*A + 2*f_c'*X*A + N*f^2 % % where: % g_c(x_c,y_c;A) - vector function of ALL the measurements % each element of g_c() is g(x,y;A) % X - a matrix of the form: [x_c.^2, x_c.*y_c, y_c.^2, x_c, y_c ] % f_c - is actually defined as ones(length(f),1)*f % % Derivation of the Cost function with respect to the vector of parameters "A" yields: % % A'*X'*X = -f_c'*X = -f*ones(1,length(f_c))*X = -f*sum(X) % % Which yields the estimator: % % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ % | A_least_squares = -f*sum(X)/(X'*X) ->(normalize by -f) = sum(X)/(X'*X) | % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ % % (We will normalize the variables by (-f) since "f" is unknown and can be accounted for later on) % % NOW, all that is left to do is to extract the parameters from the Conic Equation. % We will deal the vector A into the variables: (A,B,C,D,E) and assume F = -1; % % Recall the conic representation of an ellipse: % % A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0 % % We will check if the ellipse has a tilt (=orientation). The orientation is present % if the coefficient of the term "x*y" is not zero. If so, we first need to remove the % tilt of the ellipse. % % If the parameter "B" is not equal to zero, then we have an orientation (tilt) to the ellipse. % we will remove the tilt of the ellipse so as to remain with a conic representation of an % ellipse without a tilt, for which the math is more simple: % % Non tilt conic rep.: A`*x^2 + C`*y^2 + D`*x + E`*y + F` = 0 % % We will remove the orientation using the following substitution: % % Replace x with cx+sy and y with -sx+cy such that the conic representation is: % % A(cx+sy)^2 + B(cx+sy)(-sx+cy) + C(-sx+cy)^2 + D(cx+sy) + E(-sx+cy) + F = 0 % % where: c = cos(phi) , s = sin(phi) % % and simplify... % % x^2(A*c^2 - Bcs + Cs^2) + xy(2A*cs +(c^2-s^2)B -2Ccs) + ... % y^2(As^2 + Bcs + Cc^2) + x(Dc-Es) + y(Ds+Ec) + F = 0 % % The orientation is easily found by the condition of (B_new=0) which results in: % % 2A*cs +(c^2-s^2)B -2Ccs = 0 ==> phi = 1/2 * atan( b/(c-a) ) % % Now the constants c=cos(phi) and s=sin(phi) can be found, and from them % all the other constants A`,C`,D`,E` can be found. % % A` = A*c^2 - B*c*s + C*s^2 D` = D*c-E*s % B` = 2*A*c*s +(c^2-s^2)*B -2*C*c*s = 0 E` = D*s+E*c % C` = A*s^2 + B*c*s + C*c^2 % % Next, we want the representation of the non-tilted ellipse to be as: % % Ellipse = ( (X-X0)/a )^2 + ( (Y-Y0)/b )^2 = 1 % % where: (X0,Y0) is the center of the ellipse % a,b are the ellipse "radiuses" (or sub-axis) % % Using a square completion method we will define: % % F`` = -F` + (D`^2)/(4*A`) + (E`^2)/(4*C`) % % Such that: a`*(X-X0)^2 = A`(X^2 + X*D`/A` + (D`/(2*A`))^2 ) % c`*(Y-Y0)^2 = C`(Y^2 + Y*E`/C` + (E`/(2*C`))^2 ) % % which yields the transformations: % % X0 = -D`/(2*A`) % Y0 = -E`/(2*C`) % a = sqrt( abs( F``/A` ) ) % b = sqrt( abs( F``/C` ) ) % % And finally we can define the remaining parameters: % % long_axis = 2 * max( a,b ) % short_axis = 2 * min( a,b ) % Orientation = phi % % % initialize orientation_tolerance = 1e-3; % empty warning stack warning( '' ); % prepare vectors, must be column vectors x = x(:); y = y(:); % remove bias of the ellipse - to make matrix inversion more accurate. (will be added later on). mean_x = mean(x); mean_y = mean(y); x = x-mean_x; y = y-mean_y; % the estimation for the conic equation of the ellipse X = [x.^2, x.*y, y.^2, x, y ]; a = sum(X)/(X'*X); % check for warnings if ~isempty( lastwarn ) disp( 'stopped because of a warning regarding matrix inversion' ); ellipse_t = []; return end % extract parameters from the conic equation [a,b,c,d,e] = deal( a(1),a(2),a(3),a(4),a(5) ); % remove the orientation from the ellipse if ( min(abs(b/a),abs(b/c)) > orientation_tolerance ) orientation_rad = 1/2 * atan( b/(c-a) ); cos_phi = cos( orientation_rad ); sin_phi = sin( orientation_rad ); [a,b,c,d,e] = deal(... a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,... 0,... a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,... d*cos_phi - e*sin_phi,... d*sin_phi + e*cos_phi ); [mean_x,mean_y] = deal( ... cos_phi*mean_x - sin_phi*mean_y,... sin_phi*mean_x + cos_phi*mean_y ); else orientation_rad = 0; cos_phi = cos( orientation_rad ); sin_phi = sin( orientation_rad ); end % check if conic equation represents an ellipse test = a*c; switch (1) case (test>0), status = ''; case (test==0), status = 'Parabola found'; warning( 'fit_ellipse: Did not locate an ellipse' ); case (test<0), status = 'Hyperbola found'; warning( 'fit_ellipse: Did not locate an ellipse' ); end % if we found an ellipse return it's data if (test>0) % make sure coefficients are positive as required if (a<0), [a,c,d,e] = deal( -a,-c,-d,-e ); end % final ellipse parameters X0 = mean_x - d/2/a; Y0 = mean_y - e/2/c; F = 1 + (d^2)/(4*a) + (e^2)/(4*c); [a,b] = deal( sqrt( F/a ),sqrt( F/c ) ); long_axis = 2*max(a,b); short_axis = 2*min(a,b); % rotate the axes backwards to find the center point of the original TILTED ellipse R = [ cos_phi sin_phi; -sin_phi cos_phi ]; P_in = R * [X0;Y0]; X0_in = P_in(1); Y0_in = P_in(2); % pack ellipse into a structure ellipse_t = struct( ... 'a',a,... 'b',b,... 'phi',orientation_rad,... 'X0',X0,... 'Y0',Y0,... 'X0_in',X0_in,... 'Y0_in',Y0_in,... 'long_axis',long_axis,... 'short_axis',short_axis,... 'status','' ); else % report an empty structure ellipse_t = struct( ... 'a',[],... 'b',[],... 'phi',[],... 'X0',[],... 'Y0',[],... 'X0_in',[],... 'Y0_in',[],... 'long_axis',[],... 'short_axis',[],... 'status',status ); end % check if we need to plot an ellipse with it's axes. %if (nargin>2) & ~isempty( axis_handle ) & (test>0) % rotation matrix to rotate the axes with respect to an angle phi R = [ cos_phi sin_phi; -sin_phi cos_phi ]; % the axes ver_line = [ [X0 X0]; Y0+b*[-1 1] ]; horz_line = [ X0+a*[-1 1]; [Y0 Y0] ]; new_ver_line = R*ver_line; new_horz_line = R*horz_line; % the ellipse theta_r = linspace(0,2*pi); ellipse_x_r = X0 + a*cos( theta_r ); ellipse_y_r = Y0 + b*sin( theta_r ); xaligned_ellipse = [ellipse_x_r;ellipse_y_r]; rotated_ellipse = R * [ellipse_x_r;ellipse_y_r]; if (strcmp(plot_opt,'y')) % draw hold on plot( rotated_ellipse(1,:),rotated_ellipse(2,:),'r' ); drawnow end ellipse_t.xaligned_ellipse = xaligned_ellipse; ellipse_t.rotated_ellipse = rotated_ellipse; ellipse_t.ellipse_x_r = ellipse_x_r; ellipse_t.ellipse_y_r = ellipse_y_r; ellipse_t.R = R;