
FTrack v0.9.3

User’s Manual

Dan Valente
Mitra Lab

Cold Spring Harbor Laboratory

April 7, 2008

1 Introduction

FTrack is a suite of functions written in Matlab for the purpose of single-object video
tracking. Specifically, the “single-object” is assumed to be a fruit fly, although this
need not be the case. The current version (v0.9.3) uses the videoIO toolbox1 to
read the videos into Matlab. At this point FTrack, does not allow for multiple fly
tracking and has no analysis functionality. The analysis functionality is contained
within the accompanying program FAnalyze2. If need be, with small modifications,
the FlyTracker function (which is the backbone for FTrack) will most likely be able
to track multiple well-separated, non-colliding flies. FTrack provides the user with
the raw tracked data, along with the ability to view the data, clean any obvious
false tracks, and correct for camera tilt. It is up to the user to smooth and segment
the subsequent data anyway that the user sees fit.

The functions were written as generally as possible to locate a moving object
and track the position of that object in each frame. The algorithm that FTrack
employs is relatively basic and was optimized for the fly tracking application with
the video setup used by our lab. It has only been tested in videos with very simple,
unchanging background conditions (namely a black fly on a white background or
a white fly on a black background). FTrack is not guaranteed to work in videos
of higher complexity or with different setups, although it should have a reasonable
amount of versatility.

FTrack functions are relatively modular, so the overall structure of the program
can be maintained if changes to any particular function are required. Those who are
Matlab-savvy are encouraged to modify/replace functions as you see fit. Those who
are not Matlab-savvy should refrain from manipulating the .m files, and contact the
author with any suggestions for additions or subtractions to the program. Please
note, however, that only the most relevant, pressing changes will be made.

1http://sourceforge.net/projects/videoio/
2See FAnalyze documentation for details

1

2 Overview of the FTrack algorithm

The algorithm behind FTrack is relatively rudimentary and is described in detail
in Ref. [1] and Ref. [2] The underlying assumption is that the object moves from
frame to frame, and so subtracting a background image will highlight pixels that
are different from this background. FTrack creates a background, subtracts it from
the current frame, and squares each resulting pixel to increase the signal to noise
ratio. Then, the brightest pixel in this image is found and the center of mass (really,
center of intensity) of a subset of pixels around this point is calculated. This center
of intensity is used as the object’s location.

There are two caveats to this method, and both have to do with the calculation
of the background image. First, in order to find the object in the first frame, a static
background image must be calculated. This background is an average of the first
NB frames, where NB is a user-defined parameter. NB should be relatively small
so that the algorithm does not take an exorbitant amount of time to read the video
and calculate the average, but needs to be large enough to ensure at least some
variation in the image.3

After the first two frames, the background is calculated by taking a weighted
running average

IB(n + 1) = αIB(n) + (1− α)I(n)

where IB is the background image, I is the current frame, α is the weighting param-
eter (between 0.90 and 1.00), and n is the frame index. The entire image is updated
except for a square region that includes the fly. This allows the algorithm to work
effectively even when the fly remains stationary for a long period of time.

The body axis of the object is also calculated as the tracking algorithm proceeds.
To do this, pixels in the difference image with intensities greater than 20% of the
maximum intensity define a 2D projection of the object. This projection is effectively
a scatter plot, with points placed at the locations of the pixels that define the object.
A Principle Components Analysis (PCA) is then performed on this data. Since a fly
is typically longer than it is wide, the component with the largest variance is used
to calculate the orientation angle φ1. The orientation angle is somewhat ambiguous,
since φ2 = φ1 + π defines the same axis. For ease of use, the program divides up
the orientation angles into two groups, φUHP and φLHP . φUHP is defined as the
orientation angles that lie in the upper half plane (0 < φ < π) and φLHP are angles
that lie in the lower half plane(−π < φ < 0). For each frame, both angles are
available to the user. By comparison of these angles with the direction of velocity,
one can reasonably estimate in which direction the object is moving. It is up to the
user to decide which orientation angle to choose.

3We have seen that 100-500 frames gives reasonable results, depending on frame rate and activity
of the fly.

2

3 Placing FTrack in the Matlab path

In order to use FTrack, the FTrack folder must first be placed in the Matlab path.
It is also recommended to remove any previous versions of FTrack from the Matlab
path.

1. Open Matlab.

2. Select File >> Set Path. . . from the toolbar. The Set Path dialogue will
open up.

3. Click on the Add Folder. . . button.

4. Find the FTrack directory and select the functions folder. Click OK. The
path and name of the FTrack functions folder should show up in the Matlab
search path window.

5. Find the videoIO folder that fits your Matlab release. FTrack has only been
tested for R2006a, R2006b, and R2007a. For other releases, you will need to
recompile the videoIO functions (see the videoIO documentation if you need
to do this).

6. Repeat Step 4 with the appropriate videoIO folder.

7. Click Save, and then click Close. FTrack is now ready to use. To test if
it is installed correctly, type help videoReader and then help FTrack in
the Matlab command window. If an error is obtained upon either of these
commands, the folders were not correctly installed, so try to re-install. If the
installation worked, you will be able to open the program or use any of the
functions regardless of what directory you are currently in.

4 The FTrack GUI

The FTrack graphical user interface (GUI) was written to facilitate use of the track-
ing functions. It is specifically intended for users who have minimal-to-no experience
with programming in Matlab. Because it provides an accessible interface for loading
and tracking, use of the GUI is recommended for all applications unless the user
prefers to incorporate specific functions into his/her own scripts.

The interface is shown in Fig. 1 and is divided into two general sections: Tracking
and View & Clean Data. The functionality of these sections is described below.

Instructions for Tracking

The first section of the GUI is the “meat” of the program, so to speak. In this
section, the user inputs all of the necessary information and parameters required to
initiate the tracking.

1. Open Matlab.

3

Figure 1: The FTrack GUI

2. Type FTrack to start the program. The FTrack GUI should appear.

3. Click the Press to Load Videos button. The user can select one or more
videos to track (.avi, .mpg, mp2, etc.). The name of the videos will appear
in Matlab Command window. If multiple videos are selected, they will be
tracked in succession, and necessary information from each video will be saved
as a .mat file (see below).

4. Click the Single Frame Viewer button. This will show the first frame of
each selected video; the filename of the particular video can be seen in the title
bar of each figure window. The purpose of having this button is to extract
pertinent information about the specific videos in question and to make sure
that they can be read properly by the program. Information about the video
will be displayed in the Command Window (video dimensions, number of
frames, and frame rate).

5. Click the Arena Dimensions button. When this button is clicked, the user
is able to select any number of points in the image by left clicking. The user is
expected to click points that define the boundary of the arena. FTrack assumes
a circular/elliptical arena, so it goes ahead and calculates the best fit ellipse4 to
the selected points when the user hits Enter. FTrack then calculates a mask so
that only the portion of the video within the elliptical boundary is tracked. The
resulting mask is shown, along with the location of the boundary. Furthermore,

4The function fit ellipse is used for this calculation. It can originally be found at
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3215&objectType=File

4

the parameters of the resulting ellipse are displayed in the Command Window.
This step must be performed if the user plans to employ the Tilt Correction
functionality of FTrack.

6. Select the characteristics of the object in your video: black dot on a white
background or a white dot on a black background. As of this version, each
video must have the same characteristics.

7. Click the Input Parameters button. A window will open with several input
boxes. The filename of the video that these input parameters correspond to
is displayed at the top of this window.

• Enter the name of the directory where you would like the output files to
be stored.

• Enter the Start Frame and End Frame of the region of video that you
would like to track. Please note that the first frame of a video is indexed
as frame 0.

• Enter the Initial background size. The need for this number was
discussed in Section 2. The default is 100 frames, and this should be
sufficient for most applications.

• Enter the Radius of the Arena (in cm) as well as the Bounding
box half-size (in pixels). The Bounding box half-size defines the size
of a box around the fly that will not be updated in the background
calculations (described above). Make sure this number is slightly larger
than the maximum length of your fly.

• Enter a value for the Background weight α between 0.9 and 1.0. The
default (0.9) should be sufficient.

• Click OK

• Repeat these steps for each video that you have selected. Note: it may
be helpful to keep the figure windows from the single frame viewer open
while you input parameters.

8. Click the Track Videos button to begin tracking. The progress of the algo-
rithm will be displayed in the Command Window. After each video is tracked,
the raw (x,y) trajectory, time vector, video information (frame rate, size, etc.),
and input data are saved in a .mat file with the same filename as the video.
The variables saved are described in the Appendix. The x,y data are also saved
as .xy file as a simple two column list of positions, and the upper half plane
orientation data are saved as a .ori file. This allows the user to track many
videos at once and access the data at a later time for processing. The sav-
ing happens automatically at the end of tracking, so the user need not worry
about it. A message will be displayed in the Command Window validating
the saving process and completion of the tracking.

5

View & Clean Data

At this point, the user can choose to view and/or clean any trajectory data
that has been saved in a .mat file from a previous tracking session. You may
only select one file to view/clean at a time. To load in a previously saved
session, click the View Trajectories button, and select a file. A figure will
be displayed for the chosen video. This figure shows the x-position as function
of time (upper left), the y-position of the fly as a function of time (lower left)
and the resulting trajectory (right) as if it were drawn on a video frame. See
Figs. 2 and 3 for details.

Cleaning the Trajectory

In some cases, the object may leave the frame or hide behind an obstacle in the
environment5. When this happens, the algorithm is no longer able to locate
the object and will result in a false track for that frame. These false tracks
are marked by regions of the x or y trajectories that are visibly deviant from
the “actual” trajectory. Definitions of such deviations are largely chosen at
the discretion of the user, and examination of the data will suggest whether
these points are actual outliers or are actual movements of the object. In any
case, FTrack allows one to “clean” these outliers from the data and interpolate
between known true points. The x and y data must be cleaned separately.

1. Click Clean x data or Clean y data. A window will appear with the
requested data.

2. Use the zoom tools in the toolbar of the figure window examine any areas
of interest in further detail. This will help you determine whether points are
false tracks or true movements and will ensure that you only clean the regions
where false tracks exist.

3. Press any key to continue.

4. Crosshairs will appear in the figure window. These will allow you to select the
region of data you wish to clean.

5. Select a point to the left of the false data, then select a point to the right of
the false data. This defines the region to clean.

6. Select a point near the apparent actual trajectory. This is called the baseline.
Then select a point that defines a threshold for the outliers; that is, a point
above or below which any existing data will be discarded. If the threshold is
below the baseline, the function will discard data below the threshold; if the
threshold is above the baseline, points above the threshold will be discarded.
See the example in Figs. 4 and 5.

5Assuming, of course, measures were not taken to minimize these events in the experimental
setup.

6

0 10 20 30 40
5

10

15

20

25

Time (s)

cm

Raw x data

0 10 20 30 40
0

10

20

30

Time (s)

cm

Raw y data

10 15 20

0

5

10

15

20

25

x position (cm)

y
po

si
tio

n
(c

m
)

Raw Trajectory

Figure 2: An example figure that will be displayed when the View Trajectory
button is clicked. The raw x data is shown in the upper left, the raw y data is
shown in the lower left, and the raw trajectory is shown on the right.

x

y

width

height

Figure 3: Dimensions associated with a video frame. The origin is defined as (0 cm,
0 cm). An example trajectory is shown.

7

700 720 740 760 780 800 820

6

7

8

9

10

11

12

13

14

Zoom in if necessary. Press any key to continue.

Frame

cm
Threshold

Baseline

Left Endpoint Right Endpoint

Figure 4: An example figure showing a section of bad tracks. The true trajectory
can be inferred from surrounding data. Also shown on the figure are the definitions
for the region of data to clean, the baseline, and the threshold to be chosen.

700 720 740 760 780 800 820

6

7

8

9

10

11

12

13

14

Frame

cm

Zoom in if necessary. Press any key to continue.

Figure 5: The result of cleaning the region in Fig. 4.

8

7. The cleaned data will immediately appear. At this point, you can zoom out
to clean another section of data, or press Return twice to escape. The figure
will automatically close. A message will be displayed in the Message Center
letting you know that the data has been cleaned. DO NOT close the figure
window without pressing Return twice!

Tilt Correction

Note: As of this version (0.9.3), tilt correction is implemented in a slightly
different way than discussed in Ref. [1]. The current method should be
more robust.

When this button is pressed, FTrack takes the ellipse data from the Arena Di-
mensions calculation and transforms the data so that the arena becomes approxi-
mately circular. First the ellipse is centered at (0,0). Then, the ellipse is rotated
such that the elliptical axis closest to the x-axis rotates onto the x-axis. Finally,
the semiminor axis of the ellipse is stretched to the length of the semimajor axis,
creating a circle.

After the transformation, the data lies within a circle centered approximately at
the point (0,0). The data is then converted from pixels into centimeters using the
radius that the user has previously input. A figure appears that shows the trans-
formed trajectory with the transformed arena boundary. Finally, the transformed
data is saved.

CAUTION: It is recommended to backup the trajectory .mat file before hitting
the Tilt Correction button. There currently is no functionality for preventing over-
writing of good x,y pixel data if something has gone awry in the transformation
process (such as if the user selected bad boundary after hitting the Arena Dimen-
sions button).

5 Known Problems

The only problem encountered so far in v0.9.3 is that the reading of a frame some-
times fails towards the end of very long videos. This means that the numFrames
field in the VideoInfo structure does not actually correspond to the number of frames
that you can successfully track with FTrack, and FTrack will crash before finishing
and saving. The current solution to this is as follows: Download the video-editing
program VirtualDub (http://www.virtualdub.org/). Load the video into Virtual-
Dub and notice what the last frame is (move the time slider all the way to the right).
This corresponds to the last frame that FTrack will be able to read as well. We are
currently working on making FTrack able to catch the error before it crashes.

6 Concluding Comments

For those who wish to use the functions from the Matlab command line, complete
descriptions of their use and workings can be found in the Matlab help files; simply
type help function name. Describing them in detail here would be superfluous.

9

The scripts are also highly commented, and as such, they should be relatively easy
to follow. Suggestions for improvements to the algorithms, the GUI or the coding
style are highly encouraged! Comments on the ease of use of the GUI and functions
are also important for refining this program. Since this is v0.9.3, FTrack needs a
little more testing in order to find all of the bugs (pun intended). Once sufficient
testing has been performed, we hope to release an honest to goodness v1.0. Until
then, please check and double-check any results that you obtain from this program,
and make sure that they make sense!

Enjoy!

7 Appendix: Variables saved in the .mat file

The following is a list of the variables saved to the .mat file with the same filename
as the tracked video (minus the extension!).

t Time vector in seconds
x x-position of the fly in centimeters
y y-position of the fly in centimeters
orientation 2 x N vector, where N is the number of frames.

The first row contains the UHP orientation data;
the second row contains the LHP orientation
data.

10

arena structure that defines the best fit elliptical
boundary of the arena (see fit ellipse help
file. The arena structure has the following fields:

• a: sub axis (radius in pixels) of the X axis
of the non-tilt ellipse

• b: sub axis (radius in pixels) of the Y axis
of the non-tilt ellipse

• phi: orientation in radians of the ellipse
(tilt)

• X0: center at the X axis of the non-tilt
ellipse (in pixels)

• Y0: center at the Y axis of the non-tilt
ellipse (in pixels)

• X0 in: center at the X axis of the tilted
ellipse (in pixels)

• Y0 in: center at the Y axis of the tilted
ellipse (in pixels)

• long axis: size of the long axis of the el-
lipse (in pixels)

• short axis:size of the short axis of the el-
lipse (in pixels)

• status: status of detection of an ellipse

• epsilon: the eccentricity of the ellipse

• psi: angle of tilt of the camera (radians)

• semiminor: the semiminor axis of the el-
lipse (in pixels)

• semimajor: the semimajor axis of the el-
lipse (in pixels)

• boundaries: N x 2 vector of points de-
scribing the boundary (x,y) (in pixels)

11

VideoInfo The VideoInfo structure has the following fields:

• url: the filename of the video

• fps: the frame rate of the video

• width: the width of the video (in pixels)

• height: the height of the video (in pixels)

• bpp: See videoIO documentation

• type: See videoIO documentation

• numFrames: number of frames in the video

• fourcc: See videoIO documentation

• nHiddenFinalFrames: See videoIO docu-
mentation

InputData The InputData structure has the following
fields:

• OutputPath: the name of the directory
where output files are to be stored (.mat,
.xy, and .ori files).

• StartFrame: the frame where tracking be-
gins.

• EndFrame: the frame where tracking ends.

• NBackFrames: the number of frames in the
initial background calculation

• pixels in cm: the number of pixels in 1
centimeter (only saved if tilt correction
performed)

• sqrsize: the bounding-box half width
(described above)

• alpha: the background weighting param-
eter (described above)

12

References

[1] Valente, D., Golani, I., and P.P. Mitra, “Analysis of the trajectory of
Drosophila melanogaster in a circular open field arena.” PLoS ONE 2(10), e1083
doi:10.1371/journal.pone.0001083, (2007)

[2] Valente, D., Wang H., Andrews P., Saar S., Tchernichovski O., Benjanimi, Y.,
Golani I. and P.P. Mitra, “Characterization of animal behavior through the use
of audio and video signal processing.” IEEE Multimedia, 14 (2), 32-41, (2007)

13

