function [S,f,R,varS,zerosp,C,Serr]=mtspectrumsegpt(data,win,params,segave,fscorr) % Multi-taper segmented spectrum for a univariate binned point process % % Usage: % % [S,f,R,varS,zerosp,C,Serr]=mtspectrumsegpt(data,win,params,segave,fscorr) % Input: % Note units have to be consistent. See chronux.m for more information. % data (structure array of one channel of spike times; % also accepts 1d vector of spike times) -- required % win (duration of the segments) - required. % params: structure with fields tapers, pad, Fs, fpass, err % - optional % tapers : precalculated tapers from dpss or in the one of the following % forms: % (1) A numeric vector [TW K] where TW is the % time-bandwidth product and K is the number of % tapers to be used (less than or equal to % 2TW-1). % (2) A numeric vector [W T p] where W is the % bandwidth, T is the duration of the data and p % is an integer such that 2TW-p tapers are used. In % this form there is no default i.e. to specify % the bandwidth, you have to specify T and p as % well. Note that the units of W and T have to be % consistent: if W is in Hz, T must be in seconds % and vice versa. Note that these units must also % be consistent with the units of params.Fs: W can % be in Hz if and only if params.Fs is in Hz. % The default is to use form 1 with TW=3 and K=5 % % pad (padding factor for the FFT) - optional (can take values -1,0,1,2...). % -1 corresponds to no padding, 0 corresponds to padding % to the next highest power of 2 etc. % e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT % to 512 points, if pad=1, we pad to 1024 points etc. % Defaults to 0. % Fs (sampling frequency) - optional. Default 1. % fpass (frequency band to be used in the calculation in the form % [fmin fmax])- optional. % Default all frequencies between 0 and Fs/2 % err (error calculation [1 p] - Theoretical error bars; [2 p] - Jackknife error bars % [0 p] or 0 - no error bars) - optional. Default 0. % segave - (0 for don't average over segments, 1 for average) - optional - default 1 % fscorr (finite size corrections, 0 (don't use finite size corrections) or % 1 (use finite size corrections) - optional % (available only for spikes). Defaults 0. % Output: % S (spectrum in form frequency x segments if segave=0; function of frequency if segave=1) % f (frequencies) % R (spike rate) % varS (variance of the spectrum as a function of frequency) % zerosp (0 for segments in which spikes were found, 1 for segments % C (covariance matrix of the log spectrum - frequency x % frequency matrix) % Serr (error bars) - only if err(1)>=1 if nargin < 2; error('Need data and segment information'); end; if nargin < 3; params=[]; end; if nargin < 4 || isempty(segave); segave=1; end; [tapers,pad,Fs,fpass,err,trialave,params]=getparams(params); clear params trialave if nargin < 5 || isempty(fscorr); fscorr=0;end; if nargout > 4 && err(1)==0; error('cannot compute error bars with err(1)=0; change params and run again'); end; dtmp=change_row_to_column(data); T=max(dtmp); % total length of data minT=min(dtmp); E=minT:win:T-win; % fictitious event triggers win=[0 win]; % use window length to define left and right limits of windows around triggers dtmp=createdatamatpt(dtmp,E,win); % create segmented data set [mintime,maxtime]=minmaxsptimes(dtmp); dt=1/Fs; % sampling time t=mintime-dt:dt:maxtime+dt; % time grid for prolates N=length(t); % number of points in grid for dpss nfft=max(2^(nextpow2(N)+pad),N); % number of points in fft of prolates [f,findx]=getfgrid(Fs,nfft,fpass); % get frequency grid for evaluation tapers=dpsschk(tapers,N,Fs); % check tapers [J,Msp,Nsp]=mtfftpt(dtmp,tapers,nfft,t,f,findx);% mt fft for point process times R=Msp*Fs; S=squeeze(mean(conj(J).*J,2)); % spectra of non-overlapping segments (averaged over tapers) if segave==1; SS=squeeze(mean(S,2));R=mean(R);else;SS=S;end;% mean of the spectrum averaged across segments if nargout > 3 lS=log(SS); % log spectrum for nonoverlapping segments % varS=var(lS,1,2); % variance of log spectrum varS=var(lS',1)';% variance of the log spectrum R13 if nargout > 4 zerosp=zeros(1,size(data,2)); zerosp(Nsp==0)=1; if nargout > 5 C=cov(lS'); % covariance matrix of the log spectrum if nargout==7; if fscorr==1; Serr=specerr(SS,J,err,segave,Nsp); else Serr=specerr(SS,J,err,segave); end; end; end; end; end; S=SS;