function [C,phi,S12,S1,S2,t,f,zerosp,confC,phistd,Cerr]=cohgrampt(data1,data2,movingwin,params,fscorr) % Multi-taper time-frequency coherence - two point processes given as times % % Usage: % % [C,phi,S12,S1,S2,t,f,zerosp,confC,phistd,Cerr]=cohgrampt(data1,data2,movingwin,params,fscorr) % Input: % Note units have to be consistent. Thus, if movingwin is in seconds, Fs % has to be in Hz. see chronux.m for more information. % % data1 (structure array of spike times with dimension trials; also accepts 1d array of spike times) -- required % data2 (structure array of spike times with dimension trials; also accepts 1d array of spike times) -- required % movingwin (in the form [window winstep] -- required % params: structure with fields tapers, pad, Fs, fpass, err, trialave % - optional % tapers : precalculated tapers from dpss or in the one of the following % forms: % (1) A numeric vector [TW K] where TW is the % time-bandwidth product and K is the number of % tapers to be used (less than or equal to % 2TW-1). % (2) A numeric vector [W T p] where W is the % bandwidth, T is the duration of the data and p % is an integer such that 2TW-p tapers are used. In % this form there is no default i.e. to specify % the bandwidth, you have to specify T and p as % well. Note that the units of W and T have to be % consistent: if W is in Hz, T must be in seconds % and vice versa. Note that these units must also % be consistent with the units of params.Fs: W can % be in Hz if and only if params.Fs is in Hz. % The default is to use form 1 with TW=3 and K=5 % Note that T has to be equal to movingwin(1). % % pad (padding factor for the FFT) - optional (can take values -1,0,1,2...). % -1 corresponds to no padding, 0 corresponds to padding % to the next highest power of 2 etc. % e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT % to 512 points, if pad=1, we pad to 1024 points etc. % Defaults to 0. % Fs (sampling frequency) - optional. Default 1. % fpass (frequency band to be used in the calculation in the form % [fmin fmax])- optional. % Default all frequencies between 0 and Fs/2 % err (error calculation [1 p] - Theoretical error bars; [2 p] - Jackknife error bars % [0 p] or 0 - no error bars) - optional. Default 0. % trialave (average over trials when 1, don't average when 0) - optional. Default 0 % fscorr (finite size corrections, 0 (don't use finite size corrections) or % 1 (use finite size corrections) - optional % (available only for spikes). Defaults 0. % Output: % C (magnitude of coherency time x frequencies x trials for trialave=0; % time x frequency for trialave=1) % phi (phase of coherency time x frequencies x trials for no trial averaging; % time x frequency for trialave=1) % S12 (cross spectrum - time x frequencies x trials for no trial averaging; % time x frequency for trialave=1) % S1 (spectrum 1 - time x frequencies x trials for no trial averaging; % time x frequency for trialave=1) % S2 (spectrum 2 - time x frequencies x trials for no trial averaging; % time x frequency for trialave=1) % t (time) % f (frequencies) % zerosp (1 for windows and trials where spikes were absent (in either channel),zero otherwise) % confC (confidence level for C at 1-p %) - only for err(1)>=1 % phistd - theoretical/jackknife (depending on err(1)=1/err(1)=2) standard deviation for phi % Note that phi + 2 phistd and phi - 2 phistd will give 95% confidence % bands for phi - only for err(1)>=1 % Cerr (Jackknife error bars for C - use only for Jackknife - err(1)=2) if nargin < 3; error('Need data1 and data2 and window parameters'); end; if nargin < 4; params=[]; end; if length(params.tapers)==3 & movingwin(1)~=params.tapers(2); error('Duration of data in params.tapers is inconsistent with movingwin(1), modify params.tapers(2) to proceed') end [tapers,pad,Fs,fpass,err,trialave,params]=getparams(params); if nargin < 5 || isempty(fscorr); fscorr=0; end; if nargout > 10 && err(1)~=2; error('Cerr computed only for Jackknife. Correct inputs and run again'); end; if nargout > 8 && err(1)==0; error('Errors computed only if err(1) is not equal to zero'); end; [N,Ch]=check_consistency(data1,data2); [mintime1,maxtime1]=minmaxsptimes(data1); [mintime2,maxtime2]=minmaxsptimes(data2); mintime=min(mintime1,mintime2); maxtime=max(maxtime1,maxtime2); tn=mintime+movingwin(1)/2:movingwin(2):maxtime-movingwin(1)/2; Nwin=round(Fs*movingwin(1)); % number of samples in window % Nstep=round(movingwin(2)*Fs); % number of samples to step through nfft=max(2^(nextpow2(Nwin)+pad),Nwin); f=getfgrid(Fs,nfft,fpass); Nf=length(f); params.tapers=dpsschk(tapers,Nwin,Fs); % check tapers nw=length(tn); if trialave; C=zeros(nw,Nf); S12=zeros(nw,Nf); S1=zeros(nw,Nf); S2=zeros(nw,Nf); phi=zeros(nw,Nf); Cerr=zeros(2,nw,Nf); % phierr=zeros(2,nw,Nf); phistd=zeros(nw,Nf); else C=zeros(nw,Nf,Ch); S12=zeros(nw,Nf,Ch); S1=zeros(nw,Nf,Ch); S2=zeros(nw,Nf,Ch); phi=zeros(nw,Nf,Ch); Cerr=zeros(2,nw,Nf,Ch); % phierr=zeros(2,nw,Nf,Ch); phistd=zeros(nw,Nf,Ch); end; zerosp=zeros(nw,Ch); for n=1:nw; t=linspace(tn(n)-movingwin(1)/2,tn(n)+movingwin(1)/2,Nwin); datawin1=extractdatapt(data1,[t(1) t(end)]);datawin2=extractdatapt(data2,[t(1) t(end)]); if nargout==11; [c,ph,s12,s1,s2,f,zsp,confc,phie,cerr]=coherencypt(datawin1,datawin2,params,fscorr,t); % phierr(1,n,:,:)=squeeze(phie(1,:,:)); % phierr(2,n,:,:)=squeeze(phie(2,:,:)); phistd(n,:,:)=phie; Cerr(1,n,:,:)=squeeze(cerr(1,:,:)); Cerr(2,n,:,:)=squeeze(cerr(2,:,:)); elseif nargout==10; [c,ph,s12,s1,s2,f,zsp,confc,phie]=coherencypt(datawin1,datawin2,params,fscorr,t); % phierr(1,n,:,:)=squeeze(phie(1,:,:)); % phierr(2,n,:,:)=squeeze(phie(2,:,:)); phistd(n,:,:)=phie; else [c,ph,s12,s1,s2,f,zsp]=coherencypt(datawin1,datawin2,params,fscorr,t); end; C(n,:,:)=c; phi(n,:,:)=ph; S12(n,:,:)=s12; S1(n,:,:)=s1; S2(n,:,:)=s2; zerosp(n,:)=zsp; end; t=tn; C=squeeze(C); phi=squeeze(phi);S12=squeeze(S12); S1=squeeze(S1); S2=squeeze(S2);zerosp=squeeze(zerosp); if nargout > 9; confC=confc; end; if nargout==11;Cerr=squeeze(Cerr);end; % if nargout==10; phierr=squeeze(phierr);end if nargout==10; phistd=squeeze(phistd);end