function [SS,tau]=mtspectrum_of_spectrumc(data,win,tapers2spec,params) % Multi-taper segmented, second spectrum (spectrum of the log spectrum) for a continuous process % This routine computes the second spectrum by explicitly evaluating the % Fourier transform (since the spectrum is symmetric in frequency, it uses % a cosine transform) % % Usage: % % [SS,tau]=mtspectrum_of_spectrumc(data,win,tapers2spec,params) % Input: % Note units have to be consistent. See chronux.m for more information. % data (single channel) -- required % win (duration of the segments) - required. % tapers2spec (tapers used for the spectrum of spectrum computation) - % required in the form [use TW K] - Note that spectrum of the % spectrum involves computing two Fourier transforms. While the first % transform (of the original data) is always computed using the % multi-taper method, the current routine allows the user to specify % whether or not to use this method for the second transform. use=1 % means use tapers, use=anything other than 1 means do not use the % multitaper method. If use=1, then tapers2spec controls the % smoothing for the second Fourier transform. Otherwise, a direct % Fourier transform is computed. % params: structure with fields tapers, pad, Fs, fpass, err, trialave % - optional % tapers : precalculated tapers from dpss or in the one of the following % forms: % (1) A numeric vector [TW K] where TW is the % time-bandwidth product and K is the number of % tapers to be used (less than or equal to % 2TW-1). % (2) A numeric vector [W T p] where W is the % bandwidth, T is the duration of the data and p % is an integer such that 2TW-p tapers are used. In % this form there is no default i.e. to specify % the bandwidth, you have to specify T and p as % well. Note that the units of W and T have to be % consistent: if W is in Hz, T must be in seconds % and vice versa. Note that these units must also % be consistent with the units of params.Fs: W can % be in Hz if and only if params.Fs is in Hz. % The default is to use form 1 with TW=3 and K=5 % % pad (padding factor for the FFT) - optional (can take values -1,0,1,2...). % -1 corresponds to no padding, 0 corresponds to padding % to the next highest power of 2 etc. % e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT % to 512 points, if pad=1, we pad to 1024 points etc. % Defaults to 0. % Fs (sampling frequency) - optional. Default 1. % fpass (frequency band to be used in the calculation in the form % [fmin fmax])- optional. % Default all frequencies between 0 and % Fs/2 % Output: % SS (second spectrum in form frequency x segments x trials x channels % if segave=0; in the form frequency x trials x channels if segave=1) % tau (frequencies) if nargin < 3; error('Need data,segment duration and taper information'); end; if nargin < 4 ; params=[]; end; [tapers,pad,Fs,fpass,err,trialave,params]=getparams(params); [N,Ntr,NC]=size(data); if Ntr==1; error('cannot compute second spectrum with just one trial'); end; dt=1/Fs; % sampling interval T=N*dt; % length of data in seconds E=0:win:T-win; % fictitious event triggers datatmp=createdatamatc(data(:,1,1),E,Fs,[0 win]); % segmented data Ninseg=size(datatmp,1); % number of samples in segments nfft=max(2^(nextpow2(Ninseg)+pad),Ninseg); [f,findx]=getfgrid(Fs,nfft,fpass); NF=length(findx); S=zeros(NF,Ntr,NC); for nc=1:NC; for ntr=1:Ntr; datatmp=change_row_to_column(data(:,ntr,nc)); s=mtspectrumsegc(datatmp,win,params,1); S(:,ntr,nc)=s; end end; Sm=mean(S,2); if use==1; params.tapers=tapers2spec; params.Fs=1/(f(2)-f(1)); params.fpass=[0 params.Fs/2]; else; tau=[0:NF-1]/max(f); cosinefunc=cos(2*pi*f'*tau); end; for nc=1:NC; for ntr=1:Ntr; s=S(:,ntr,nc)./Sm(:,nc); s=log(s); if use==1; sflip=flipdim(s,1); s=[sflip(1:NF-1);s]; [ss,tau]=mtspectrumc(s,params); SS(:,ntr,nc)=ss; else; s=repmat(s,[1 NF]).*cosinefunc; % subplot(221); plot(s(:,1)); % subplot(222); plot(s(:,10)); % subplot(223); plot(s(:,100)); % subplot(224); plot(s(:,120)); % pause s=trapz(f,s,1)'; ss=s.*conj(s); % plot(tau,s) % pause end SS(:,ntr,nc)=ss; end end; SS=mean(SS,2);