#!/usr/bin/env python # coding: utf-8 # ### Define paths and animals for the analysis # In[1]: path = '/media/andrey/My Passport/GIN/Anesthesia_CA1/meta_data/meta_recordings_transition_state.xlsx' path4results = '/media/andrey/My Passport/GIN/Anesthesia_CA1/validation/calcium_imaging_transition_state/' #To store transformation matrix save_plots_path = '/media/andrey/My Passport/GIN/Anesthesia_CA1/validation/calcium_imaging_transition_state/' log_file_path = save_plots_path + 'registration_logs.txt' #animals_for_analysis = [8235,8237,8238] animals_for_analysis = ['F0','M0','M3'] # ### Align FOV's for all recordings # In[2]: repeat_calc = 1 silent_mode = False ####################### import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import sys np.set_printoptions(threshold=sys.maxsize) from pystackreg import StackReg # Sobel filter (not used) #from scipy import ndimage #https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.sobel.html meta_data = pd.read_excel(path, engine='openpyxl') #%% compute transformations matrices between recordings recordings = meta_data['Number'] animals = animals_for_analysis #print("Recordings: ", recordings) #ALIGNMENT ALGORITHM sr = StackReg(StackReg.AFFINE) # ROI adjustment check for all recordings from matplotlib import colors Amap = colors.ListedColormap(['white','tab:blue', 'tab:red','purple']) ''' if not os.path.exists(save_plots_path + 'ROIAdjustmentCheck/'): os.makedirs(save_plots_path + 'ROIAdjustmentCheck/') for animal in animals: if not os.path.exists(save_plots_path + 'ROIAdjustmentCheck/' + str(animal) + "/"): os.makedirs(save_plots_path + 'ROIAdjustmentCheck/' + str(animal) + "/") tmats_loaded = np.load(path4results + 'StackReg/' + str(animal) + "_best_tmats" + '.npy') meta_animal = meta_data[meta_data['Mouse_all'] == animal] recordings = meta_animal['Number'] #,'blue', 'green','cyan']) print(recordings) images = np.zeros((512, 512, np.shape(meta_animal)[0])) for idx, recording in enumerate(recordings): stats = np.load(meta_data['Folder'][recording] + str(meta_data['Subfolder'][recording]) + str(int(meta_data['Recording idx'][recording])) + '/suite2p/plane0/stat.npy', allow_pickle=True) iscell = np.load(meta_data['Folder'][recording] + str(meta_data['Subfolder'][recording]) + str(int(meta_data['Recording idx'][recording])) + '/suite2p/plane0/iscell.npy', allow_pickle=True) stats = stats[iscell[:, 0].astype(bool)] for stats_neuron in stats: images[stats_neuron['ypix'], stats_neuron['xpix'], idx] += 1 images[:,:,idx][images[:,:,idx]>1] = 1 roi_corresp = np.zeros((512, 512)) #for idx0 in range(np.shape(images)[2]): #for idx1 in range(idx0, np.shape(images)[2]): for idx0, recording0 in enumerate(recordings): for idx1, recording1 in enumerate(recordings): # roi_corresp = images[:,:,idx0] + 2*images[:,:,idx1] roi_corresp = images[:,:,idx0] + 2*sr.transform(images[:, :, idx1], tmats_loaded[idx0, idx1, :, :]) file_title = str(idx0) + "_" + str(idx1) + "_" + meta_data['Condition'][recording0] + "_" + meta_data['Condition'][recording1] print(file_title) plt.imshow(roi_corresp[:,:],cmap=Amap) #'tab10' #plt.annotate('blue - reference / green - corrected / cyan - intersection', xy=(0, 0), xytext=(.8, 0), fontsize=12) plt.savefig(save_plots_path + "ROIAdjustmentCheck/" + str(animal) + '/' + file_title + "_ROI_correspondence.svg") #plt.show() ''' if not os.path.exists(save_plots_path + 'ROIs/'): os.makedirs(save_plots_path + 'ROIs/') for animal in animals: if not os.path.exists(save_plots_path + 'ROIs/' + str(animal) + "/"): os.makedirs(save_plots_path + 'ROIs/' + str(animal) + "/") #tmats_loaded = np.load(path4results + 'StackReg/' + str(animal) + "_best_tmats" + '.npy') meta_animal = meta_data[meta_data['Mouse_all'] == animal] recordings = meta_animal['Number'] #,'blue', 'green','cyan']) print(recordings) images = np.zeros((512, 512, np.shape(meta_animal)[0])) for idx, recording in enumerate(recordings): stats = np.load(meta_data['Folder'][recording] + str(meta_data['Subfolder'][recording]) + str(int(meta_data['Recording idx'][recording])) + '/suite2p/plane0/stat.npy', allow_pickle=True) iscell = np.load(meta_data['Folder'][recording] + str(meta_data['Subfolder'][recording]) + str(int(meta_data['Recording idx'][recording])) + '/suite2p/plane0/iscell.npy', allow_pickle=True) #stats = stats[iscell[:, 0].astype(bool)] for stats_neuron in stats: images[stats_neuron['ypix'], stats_neuron['xpix'], idx] += 1 images[:,:,idx][images[:,:,idx]>1] = 1 roi_corresp = np.zeros((512, 512)) for idx0, recording0 in enumerate(recordings): #roi_corresp = sr.transform(images[:, :, idx0], tmats_loaded[0, idx0, :, :]) roi_corresp = images[:, :, idx0] #roi_corresp [roi_corresp > 0.5] = 1 file_title = str(idx0) + "_" + meta_data['Condition'][recording0] print(file_title) plt.imshow(roi_corresp[:,:],cmap='binary') #'tab10' plt.savefig(save_plots_path + "ROIs/" + str(animal) + '/' + file_title + "_ROIs.svg")