123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- function F = spm_Fcdf(x,v,w)
- % Cumulative Distribution Function (CDF) of F (Fisher-Snedecor) distribution
- % FORMAT F = spm_Fcdf(x,df)
- % FORMAT F = spm_Fcdf(x,v,w)
- %
- % x - F-variate (F has range [0,Inf) )
- % df - Degrees of freedom, concatenated along last dimension
- % Eg. Scalar (or column vector) v & w. Then df=[v,w];
- % v - Shape parameter 1 / numerator degrees of freedom (v>0)
- % w - Shape parameter 2 / denominator degrees of freedom (w>0)
- % F - CDF of F-distribution with [v,w] degrees of freedom at points x
- %__________________________________________________________________________
- %
- % spm_Fcdf implements the Cumulative Distribution Function of the F-distribution.
- %
- % Definition:
- %--------------------------------------------------------------------------
- % The CDF F(x) of the F distribution with degrees of freedom v & w,
- % defined for positive integer degrees of freedom v & w, is the
- % probability that a realisation of an F random variable X has value
- % less than x F(x)=Pr{X<x} for X~F(v,w). The F-distribution is defined
- % for v>0 & w>0, and for x in [0,Inf) (See Evans et al., Ch16).
- %
- % Variate relationships: (Evans et al., Ch16 & 37)
- %--------------------------------------------------------------------------
- % The square of a Student's t variate with w degrees of freedom is
- % distributed as an F-distribution with [1,w] degrees of freedom.
- %
- % For X an F-variate with v,w degrees of freedom, w/(w+v*X^2) has
- % distributed related to a Beta random variable with shape parameters
- % w/2 & v/2.
- %
- % Algorithm:
- %--------------------------------------------------------------------------
- % Using the relationship with the Beta distribution: The CDF of the
- % F-distribution with v,w degrees of freedom is related to the
- % incomplete beta function by:
- % Pr(X<x) = 1 - betainc(w/(w+v*x^2),w/2,v/2)
- % See Abramowitz & Stegun, 26.6.2; Press et al., Sec6.4 for
- % definitions of the incomplete beta function. The relationship is
- % easily verified by substituting for w/(w+v*x^2) in the integral of the
- % incomplete beta function.
- %
- % MATLAB's implementation of the incomplete beta function is used.
- %
- %
- % References:
- %--------------------------------------------------------------------------
- % Evans M, Hastings N, Peacock B (1993)
- % "Statistical Distributions"
- % 2nd Ed. Wiley, New York
- %
- % Abramowitz M, Stegun IA, (1964)
- % "Handbook of Mathematical Functions"
- % US Government Printing Office
- %
- % Press WH, Teukolsky SA, Vetterling AT, Flannery BP (1992)
- % "Numerical Recipes in C"
- % Cambridge
- %
- %__________________________________________________________________________
- % Copyright (C) 1992-2013 Wellcome Trust Centre for Neuroimaging
- % Andrew Holmes
- % $Id: spm_Fcdf.m 5602 2013-08-12 13:35:52Z guillaume $
- %-Format arguments, note & check sizes
- %--------------------------------------------------------------------------
- if nargin<2, error('Insufficient arguments'), end
- %-Unpack degrees of freedom v & w from single df parameter (v)
- if nargin<3
- vs = size(v);
- if prod(vs)==2
- %-DF is a 2-vector
- w = v(2); v = v(1);
- elseif vs(end)==2
- %-DF has last dimension 2 - unpack v & w
- nv = prod(vs);
- w = reshape(v(nv/2+1:nv),vs(1:end-1));
- v = reshape(v(1:nv/2) ,vs(1:end-1));
- else
- error('Can''t unpack both df components from single argument')
- end
- end
- %-Check argument sizes
- ad = [ndims(x);ndims(v);ndims(w)];
- rd = max(ad);
- as = [[size(x),ones(1,rd-ad(1))];...
- [size(v),ones(1,rd-ad(2))];...
- [size(w),ones(1,rd-ad(3))]];
- rs = max(as);
- xa = prod(as,2)>1;
- if sum(xa)>1 && any(any(diff(as(xa,:)),1))
- error('non-scalar args must match in size'), end
- %-Computation
- %--------------------------------------------------------------------------
- %-Initialise result to zeros
- F = zeros(rs);
- %-Only defined for strictly positive v & w. Return NaN if undefined.
- md = ( ones(size(x)) & v>0 & w>0 );
- if any(~md(:))
- F(~md) = NaN;
- warning('Returning NaN for out of range arguments');
- end
- %-Non-zero where defined and x>0
- Q = find( md & x>0 );
- if isempty(Q), return, end
- if xa(1), Qx=Q; else Qx=1; end
- if xa(2), Qv=Q; else Qv=1; end
- if xa(3), Qw=Q; else Qw=1; end
- %-Compute
- F(Q) = 1 - betainc(w(Qw)./(w(Qw) + v(Qv).*x(Qx)),w(Qw)/2,v(Qv)/2);
|