123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- function [Ci,Q]=modularity_dir(A,gamma)
- %MODULARITY_DIR Optimal community structure and modularity
- %
- % Ci = modularity_dir(W);
- % [Ci Q] = modularity_dir(W);
- %
- % The optimal community structure is a subdivision of the network into
- % nonoverlapping groups of nodes in a way that maximizes the number of
- % within-group edges, and minimizes the number of between-group edges.
- % The modularity is a statistic that quantifies the degree to which the
- % network may be subdivided into such clearly delineated groups.
- %
- % Inputs:
- % W,
- % directed weighted/binary connection matrix
- % gamma,
- % resolution parameter (optional)
- % gamma>1, detects smaller modules
- % 0<=gamma<1, detects larger modules
- % gamma=1, classic modularity (default)
- %
- % Outputs:
- % Ci, optimal community structure
- % Q, maximized modularity
- %
- % Note:
- % This algorithm is essentially deterministic. The only potential
- % source of stochasticity occurs at the iterative finetuning step, in
- % the presence of non-unique optimal swaps. However, the present
- % implementation always makes the first available optimal swap and
- % is therefore deterministic.
- %
- % References:
- % Leicht and Newman (2008) Phys Rev Lett 100:118703.
- % Reichardt and Bornholdt (2006) Phys Rev E 74:016110.
- %
- % 2008-2016
- % Mika Rubinov, UNSW
- % Jonathan Power, WUSTL
- % Dani Bassett, UCSB
- % Xindi Wang, Beijing Normal University
- % Roan LaPlante, Martinos Center for Biomedical Imaging
- % Modification History:
- % Jul 2008: Original (Mika Rubinov)
- % Oct 2008: Positive eigenvalues made insufficient for division (Jonathan Power)
- % Dec 2008: Fine-tuning made consistent with Newman's description (Jonathan Power)
- % Dec 2008: Fine-tuning vectorized (Mika Rubinov)
- % Sep 2010: Node identities permuted (Dani Bassett)
- % Dec 2013: Gamma resolution parameter included (Mika Rubinov)
- % Dec 2013: Detection of maximum real part of eigenvalues enforced (Mika Rubinov)
- % Thanks to Mason Porter and Jack Setford, University of Oxford
- % Dec 2015: Single moves during fine-tuning enforced (Xindi Wang)
- % Jan 2017: Removed node permutation and updated documentation (Roan LaPlante)
- if ~exist('gamma','var')
- gamma = 1;
- end
- N=length(A); %number of vertices
- % n_perm = randperm(N); %DB: randomly permute order of nodes
- % A = A(n_perm,n_perm); %DB: use permuted matrix for subsequent analysis
- Ki=sum(A,1); %in-degree
- Ko=sum(A,2); %out-degree
- m=sum(Ki); %number of edges
- b=A-gamma*(Ko*Ki).'/m;
- B=b+b.'; %directed modularity matrix
- Ci=ones(N,1); %community indices
- cn=1; %number of communities
- U=[1 0]; %array of unexamined communites
- ind=1:N;
- Bg=B;
- Ng=N;
- while U(1) %examine community U(1)
- [V,D]=eig(Bg);
- [~,i1]=max(real(diag(D))); %maximal positive (real part of) eigenvalue of Bg
- v1=V(:,i1); %corresponding eigenvector
- S=ones(Ng,1);
- S(v1<0)=-1;
- q=S.'*Bg*S; %contribution to modularity
- if q>1e-10 %contribution positive: U(1) is divisible
- qmax=q; %maximal contribution to modularity
- Bg(logical(eye(Ng)))=0; %Bg is modified, to enable fine-tuning
- indg=ones(Ng,1); %array of unmoved indices
- Sit=S;
- while any(indg) %iterative fine-tuning
- Qit=qmax-4*Sit.*(Bg*Sit); %this line is equivalent to:
- [qmax,imax]=max(Qit.*indg); %for i=1:Ng
- Sit(imax)=-Sit(imax); % Sit(i)=-Sit(i);
- indg(imax)=nan; % Qit(i)=Sit.'*Bg*Sit;
- if qmax>q % Sit(i)=-Sit(i);
- q=qmax; %end
- S=Sit;
- end
- end
- if abs(sum(S))==Ng %unsuccessful splitting of U(1)
- U(1)=[];
- else
- cn=cn+1;
- Ci(ind(S==1))=U(1); %split old U(1) into new U(1) and into cn
- Ci(ind(S==-1))=cn;
- U=[cn U]; %#ok<AGROW>
- end
- else %contribution nonpositive: U(1) is indivisible
- U(1)=[];
- end
- ind=find(Ci==U(1)); %indices of unexamined community U(1)
- bg=B(ind,ind);
- Bg=bg-diag(sum(bg)); %modularity matrix for U(1)
- Ng=length(ind); %number of vertices in U(1)
- end
- s=Ci(:,ones(1,N)); %compute modularity
- Q=~(s-s.').*B/(2*m);
- Q=sum(Q(:));
- % Ci_corrected = zeros(N,1); % DB: initialize Ci_corrected
- % Ci_corrected(n_perm) = Ci; % DB: return order of nodes to the order used at the input stage.
- % Ci = Ci_corrected; % DB: output corrected community assignments
|