function [Q] = spm_P_clusterFDR(k,df,STAT,R,n,ui,Ps) % Return the corrected FDR q-value % FORMAT [Q] = spm_P_clusterFDR(k,df,STAT,R,n,ui,Ps) % % k - extent {RESELS} % df - [df{interest} df{residuals}] % STAT - Statistical field % 'Z' - Gaussian field % 'T' - T - field % 'X' - Chi squared field % 'F' - F - field % R - RESEL Count {defining search volume} % n - Conjunction number % ui - feature-inducing threshold % Ps - Vector of sorted (ascending) p-values % Q - FDR q-value %__________________________________________________________________________ % % References % % J.R. Chumbley and K.J. Friston, "False discovery rate revisited: FDR and % topological inference using Gaussian random fields". NeuroImage, % 44(1):62-70, 2009. % % J.R. Chumbley, K.J. Worsley, G. Flandin and K.J. Friston, "Topological % FDR for NeuroImaging". Under revision. %__________________________________________________________________________ % Copyright (C) 2009 Wellcome Trust Centre for Neuroimaging % Justin Chumbley & Guillaume Flandin % $Id: spm_P_clusterFDR.m 2764 2009-02-19 15:30:03Z guillaume $ % Compute uncorrected p-values based on k using Random Field Theory %-------------------------------------------------------------------------- [P, Z] = spm_P_RF(1, k, ui, df, STAT, R, n); % q value using the Benjamini & Hochberch False Discovery Rate procedure %-------------------------------------------------------------------------- Q = spm_P_FDR(Z, df, 'P', n, Ps);