
a

b c

d

e

Supplementary Figure 3. RatCAVE hardware-software components flowchart. Each component, depicted as vertical parenthesis, takes information from one source and sends
information to another source; information flow is depicted in direction of arrows. Detailed operations of each component are depicted as blocks, and software components are labeled
by letter. (a) Blender 3D. The virtual environment is created before the experiment using 3D modeling software (right-center module) for loading into the VR experiment script. (Gray
Zone) Tracking and Setup Coregistration. A Multi-camera array sends imaging data of the rodent's position on each camera to 3D tracking software, which combines the data from
each camera image into a single 3D location and sends that position to the ratCAVE environment (left, “Optical 3D Tracking System”). (b) MotivePy. The cameras' settings can be
modified directly in a Python environment to make visible-light collection possible, a necessary step for arena scanning and projector calibration. (c) ratcave_calibrate. Two
command-line programs are used for arena scanning and projector calibration. The arena scanning program projects a moving grid of white dots on the arena surface, collects the 3D
positions of the projected points via the camera array, and fits the resultant point cloud to a 3D mesh model of the arena. The projector calibration program maps single points displayed
from the projector onto the 3D position of the arena, one at a time. It then uses OpenCV's camera_calibrate tool to use these mappings to find the position of the projector in the camera
array's coordinate space. (Blue Zone) VR Engine. (d) NatNetClient. Rat position data is collected in real-time from the camera array and brought into the Python environment, for use
in VR experiment scripts. (e) Fruitloop. The virtual environment (VE) is rendered in a Python 3D graphics engine. The VE is loaded from file (created in Blender 3D), and on each
display frame, using the rodent position data to move a virtual camera to the rodent's position in a virtual environment (blue zone). This process, encompassing the core of the VR
engine, (get rodent position, move camera, update and render scene) occurs in a loop, repeated each frame, with the frames themselves sent to the GPU for arena mapping and
shading (examples on Supp. Figure 1d) and then to the video projector (bottom-right corner). See the “Software” section in Online Methods for more details.

