12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- :Comment : mtau deduced from text (said to be 6 times faster than for NaTa)
- :Comment : so I used the equations from NaT and multiplied by 6
- :Reference : Modeled according to kinetics derived from Magistretti & Alonso 1999
- :Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21
- NEURON {
- SUFFIX Nap
- USEION na READ ena WRITE ina
- RANGE gbar, g, ina
- }
- UNITS {
- (S) = (siemens)
- (mV) = (millivolt)
- (mA) = (milliamp)
- }
- PARAMETER {
- gbar = 0.00001 (S/cm2)
- }
- ASSIGNED {
- v (mV)
- ena (mV)
- ina (mA/cm2)
- g (S/cm2)
- mInf
- mTau
- mAlpha
- mBeta
- hInf
- hTau
- hAlpha
- hBeta
- }
- STATE {
- m
- h
- }
- BREAKPOINT {
- SOLVE states METHOD cnexp
- g = gbar*m*m*m*h
- ina = g*(v-ena)
- }
- DERIVATIVE states {
- rates()
- m' = (mInf-m)/mTau
- h' = (hInf-h)/hTau
- }
- INITIAL{
- rates()
- m = mInf
- h = hInf
- }
- PROCEDURE rates(){
- LOCAL qt
- qt = 2.3^((34-21)/10)
- UNITSOFF
- mInf = 1.0/(1+exp((v- -52.6)/-4.6))
- if(v == -38){
- v = v+0.0001
- }
- mAlpha = (0.182 * (v- -38))/(1-(exp(-(v- -38)/6)))
- mBeta = (0.124 * (-v -38))/(1-(exp(-(-v -38)/6)))
- mTau = 6*(1/(mAlpha + mBeta))/qt
- if(v == -17){
- v = v + 0.0001
- }
- if(v == -64.4){
- v = v+0.0001
- }
- hInf = 1.0/(1+exp((v- -48.8)/10))
- hAlpha = -2.88e-6 * (v + 17) / (1 - exp((v + 17)/4.63))
- hBeta = 6.94e-6 * (v + 64.4) / (1 - exp(-(v + 64.4)/2.63))
- hTau = (1/(hAlpha + hBeta))/qt
- UNITSON
- }
|