123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- import neuromllite
- from pyneuroml import pynml
- import os
- from neuromllite.MatrixHandler import MatrixHandler
- from neuromllite.GraphVizHandler import GraphVizHandler
- f = 'HL23Net_1.0.net.nml'
- #f = 'HL23Net_0.1.net.nml'
- level = 1
- print("Converting %s to matrix form, level %i" % (f, level))
- from neuroml.hdf5.NeuroMLXMLParser import NeuroMLXMLParser
- handler = MatrixHandler(level=level,
- nl_network=None,
- show_already=False,
- save_figs_to_dir='.')
- currParser = NeuroMLXMLParser(handler)
- currParser.parse(f)
- handler.finalise_document()
- level_gv = 6
- engine = 'dot'
- def generate_graph(level_gv, engine):
- handler_gv = GraphVizHandler(level_gv,
- engine=engine,
- nl_network=None,
- include_ext_inputs=False,
- include_input_pops=False,
- view_on_render=False)
-
- currParser_gv = NeuroMLXMLParser(handler_gv)
- currParser_gv.parse(f)
- handler_gv.finalise_document()
- os.rename('HL23Network.gv.png','%s.%s.%s.png'%(f,engine,level_gv))
- generate_graph(level_gv, engine)
- level_gv = 2
- engine = 'circo'
- generate_graph(level_gv, engine)
- info = '## Analysis of NeuroML network: %s\n\n'%(f)
- nml2_doc = pynml.read_neuroml2_file(f)
- net_info = nml2_doc.summary(show_includes=False)
- info +='```\n%s\n```\n'%(net_info)
- info +='![fig](%s.circo.2.png)\n'%(f)
- info +='![fig](%s.dot.6.png)\n'%(f)
- for w in handler.weight_arrays_to_show:
- info +='### %s\n'%w
- info +='![fig](%s)\n'%(handler.weight_array_figures[w])
- info +='```\n%s\n```\n'%(handler.weight_arrays_to_show[w])
- #weight_array_figures
- with open('Analysis_%s.md'%f,'w') as rm_file:
- rm_file.write(info)
|