:Comment : mtau deduced from text (said to be 6 times faster than for NaTa) :Comment : so I used the equations from NaT and multiplied by 6 :Reference : Modeled according to kinetics derived from Magistretti & Alonso 1999 :Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21 NEURON { SUFFIX Nap USEION na READ ena WRITE ina RANGE gbar, g, ina } UNITS { (S) = (siemens) (mV) = (millivolt) (mA) = (milliamp) } PARAMETER { gbar = 0.00001 (S/cm2) } ASSIGNED { v (mV) ena (mV) ina (mA/cm2) g (S/cm2) mInf mTau mAlpha mBeta hInf hTau hAlpha hBeta } STATE { m h } BREAKPOINT { SOLVE states METHOD cnexp g = gbar*m*m*m*h ina = g*(v-ena) } DERIVATIVE states { rates() m' = (mInf-m)/mTau h' = (hInf-h)/hTau } INITIAL{ rates() m = mInf h = hInf } PROCEDURE rates(){ LOCAL qt qt = 2.3^((34-21)/10) UNITSOFF mInf = 1.0/(1+exp((v- -52.6)/-4.6)) if(v == -38){ v = v+0.0001 } mAlpha = (0.182 * (v- -38))/(1-(exp(-(v- -38)/6))) mBeta = (0.124 * (-v -38))/(1-(exp(-(-v -38)/6))) mTau = 6*(1/(mAlpha + mBeta))/qt if(v == -17){ v = v + 0.0001 } if(v == -64.4){ v = v+0.0001 } hInf = 1.0/(1+exp((v- -48.8)/10)) hAlpha = -2.88e-6 * (v + 17) / (1 - exp((v + 17)/4.63)) hBeta = 6.94e-6 * (v + 64.4) / (1 - exp(-(v + 64.4)/2.63)) hTau = (1/(hAlpha + hBeta))/qt UNITSON }