#!/usr/bin/env Rscript library(grangers) library(RcppCNPy) signal_mat <- npyLoad('../data/time_series_small.npy') x <- signal_mat[1, ] y <- signal_mat[2, ] GC <- Granger.unconditional(x, y, ic.chosen='AIC', max.lag=4, plot=F) frequency <- GC$frequency gc_x_y <- GC$Unconditional_causality_x.to.y gc_y_x <- GC$Unconditional_causality_y.to.x result_df <- data.frame(frequency, gc_x_y, gc_y_x) gc_matrix <- as.matrix(result_df) npySave("../data/gc_matrix.npy", gc_matrix)