1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- function [dataOut,dataOutI] = findConS(dataIn,seq,nTrials,nConS,exactNConSI)
- % IDENTIFY consecutive standard responses
- % This function identifies consecutive standard responses in the oddball
- % paradigm. The number of responses is defined by nConS
- % define some variables
- pSmpl = size(dataIn,1);
- nBlcks = size(dataIn,3);
- nFiles = size(dataIn,4);
- nFilt = size(dataIn,5);
- dataOut = cell(nBlcks,nFiles); % preallocate
- dataOutI = cell(nBlcks,nFiles); % preallocate
- for f = 1:nFiles
- for b = 1:nBlcks
- % create std sequences
- seqStd = ~seq(1:nTrials(b,f),b,f)';
- % create vector that contains all clusters of consecutive standards
- % code from forum: replace ones by number of consecutive repetitions
- switch exactNConSI
- case 0
- vecClI = double(seqStd);
- case 1
- d = [1,diff(seqStd)~=0,1]; % TRUE if values change
- n = diff(find(d)); % Number of repetitions
- X = repelem(n,n);
- vecClI = X.*seqStd; % accept only clusters of consecutive standards and not deviants
- vecClI(vecClI<nConS) = 0; % replace numbers that are smaller than criterion (less than X consecutive repetitions) by 0
- vecClI(vecClI>=nConS) = 1; % replace numbers that are equal or larger than criterion (X consecutive repetitions or more) by 1
- end
- % count appearances of consecutive standards in each accepted
- % cluster (code from forum)
- B = vecClI;
- d2 = [true,diff(B)~=0];
- r = find(d2);
- B(~d2) = 1;
- B(d2) = [1,1-diff(r)];
- B(1) = 1;
- B = cumsum(B);
- % remove standards that appear in a cluster at a higher position
- % than nConS
- B(B<=nConS) = 1; % replace numbers that are equal or smaller than criterion by 1
- B(B>nConS) = 0; % replace numbers that are larger than criterion by 0
- vecClI = logical(vecClI.*B); % accept only the first X standard responses of clusters of consecutive standards that are equal or larger than X
- % identify number and size of accepted clusters
- bCl = diff([0,vecClI,0]); % vector that marks borders of clusters
- nCl = sum(bCl==1); % number of accepted clusters (1 marks the starting point of a cluster)
- sCl = find(bCl==1); % starting points of clusters
- eCl = find(bCl==-1)-1; % ending points of clusters
- lCl = eCl-sCl+1; % size of clusters
- % produce matrices that contain all accepted vectors
- dataOutI{b,f} = zeros(nConS,nCl); % preallocate
- dataOut{b,f} = zeros(pSmpl,nConS,nCl,nFilt); % preallocate
- for n = 1:nCl % once for each cluster
- dataOutI{b,f}(1:lCl(n),n) = vecClI(sCl(n):eCl(n)); % replace 0s by 1s for each std in the given cluster
- dataOut{b,f}(:,1:lCl(n),n,:) = dataIn(:,sCl(n):eCl(n),b,f,:); % create new variable that contains all std responses of the given cluster
- end
- dataOutI{b,f} = logical(dataOutI{b,f}); % convert to logical
- end
- end
|