
Challenges and solutions in community driven software development

Resources

Closing the feedback loop:
Community driven development of a file format

Adrian Stoewer 1, Christian Kellner 1, Jan Benda 2, Michael Sonntag 1

Andrey Sobolev 1, Thomas Wachtler 1, and Jan Grewe 1,2

1German Neuroinformatics Node, Department Biologie II,
Ludwig-Maximilians-Universität München, Germany;

2Institut für Neurobiologie, Universität Tübingen, Germany

Introduction

Looking back on the development process of the NIX[1] project we would
like to share our experiences with the community, seeking fruitful
discussions and exchange of information about community-driven
software development in a scientific working environment. We
encountered challenges and issues at technical, logistic, and sociological
levels. One aspect, which is probably common to many such projects, is
that resources are limited, and most of the development relies on a small
group of contributors with diverse backgrounds, located at different
places.

Thus, it is important to improve communication, collaboration, and code
quality management. Second, while it is crucial that the development is
guided by multiple use cases, scientists, even those that are interested in
using the software, are typically busy with their everyday research. This
makes it difficult to obtain information, data and feedback, especially in
the initial phases when the funcitonality of the software is still limited.
Furthermore, in contrast to software that is written for use within a single
lab, developing software that is intended to be useful for a broader
community poses substantial demands.

[1] https://github.com/G-Node/nix
[2] https://travis-ci.org
[3] http://www.appveyor.com
[4] https://coveralls.io
[5] https://open.cdash.org

contact: adrian.stoewer@rz.ifi.lmu.de

This work was performed in connection with the activities
of the HDF5 working group of the INCF Electrophysiology
Data Sharing Task Force

Supported by:
G-Node (BMBF grant 01GQ1302)

Challenges:
• Create installers and packages for all
 platforms as expected by their users

Solutions:
• Use standard build tools such as cmake,
 setuptools, and debuild
• Build services can help to automatize the process
• Use distribution platforms such as PyPi, Maven Central,
 Homebrew and Launchpad

D
e
p
lo

ym

en
t

Evalu

at
io

n Testing

Implem

entatio
n

P
la

nn
in

g

Challenges:
• Heterogeneous teams consisting of members from different

backgrounds can lead to varying code quality
• Support multiple programming languages and

computing environments such as Python and
Matlab

Solutions:
• Pull-request based development cycle

• Code review and four-eyes principle on
 each pull-request
• Implement library in C or C++ to
 support future language bindings
 -> slows down the development

Feedback Gap

• Technical challenges are relatively easy to overcome. A rich ecosystem of services
 and platforms has the potential to improve colaborative development greatly.

• Communication with potential users and feedback from the scientific community is
 still an issue.

• Currently there is only limited incentive for scientists to perform non scientific work
 such as contributing code to software projects or testing new software during the
 development.

Can organizations like the INCF bridge the gap between developers and potential users
and give scientists more incentive to contribute to software projects?

Challenges:
• Analyze the problem and identify an appropriate set of requirements.
• Plan features of the format according to realistic requi-
 rements

Solutions:
• Participate in and interact with initiatives from
 the neuroscience community such as the
 Electrophysiology Task Force of the INCF
• Have scientists and experimentalists
 on the development team

Challenges:
• Get feedback from the community in
 order to evaluate implemented features
• Test implementation against real world
 use-cases

Solutions:
• Collaborate with labs, thus ensuring that all
 requirements are met
• Get use-cases from initiatives such as the NWB
 project

Chicken-and-egg situation: real feedback
can only be obtained from the final
format which by itself needs feedback
during its development Challenges:

• Ensure code quality and correctness
• Achieve cross-platform and cross-

compiler support although developers
usually work in their preferred

environment

Solutions:
• Write unit tests and integrate them in the

build tool-chain
• Run automated tests on as many platforms as

possible using services like Travis-CI[2] or Appveyor[3]
• Automatically check test coverage with Coveralls[4]

• Run automated static code analysis
• Tools such as CDash[5] can help to get an overview about all
 inspections

*

Summary

