
The data model

Example: Using the model to represent electrophysiology data

Resources

Integrating data storage and annotation in the data
workflow using the NIX format and libraries

Introduction

Increasing complexity of experimental approaches in neurosciences
challenges methods for managing recorded data and metadata. Storing
such information consistently is an essential part of experimental research
and depends crucially on available file formats. Currently existing file
formats are subject to several restrictions: some formats are vendor specific
or only accessible via proprietary software. Others are highly domain
specific, designed with respect to efficiency for certain kinds of data and
therefore not versatile enough to be used in a wide variety of use cases.

Moreover, many existing formats provide only limited support for storing
metadata along with the data. The NIX project specifies a versatile format
for neuroscientific data. It provides libraries for accessing these files from
different platforms. NIX is based on a well defined data model which can be
used to represent both data and related metadata. In particular, it
provides generic entities designed to store a wide variety of data types
like continuous signals, spike events, image stacks, or other multi-
dimensional data. Metadata storage is supported via adaption of the
odML data model[1].

Block

• Block entities group data elements
 that belong to a certain recording.
• Every other entity of the model has to
 be associated with exactly one Block.
• Each file may contain any number
 of Block entities.

Tag

• Defines regions or points of interest:
 segments, spike times, events ...
• Tags point into referenced DataArrays
 using position and extent vectors.
• A tag can be associated with data that
 is a feature of the tag.

DataArray

• Stores data in an n-dimensional array.
• Provides information about the data
 type and units of its values.
• Each dimension of a DataArray is
 defined using a Dimension entity,
 supporting both regularly and irregu-
 larly sampled data.

HDF5 file schema

This example shows how the model is used
to represent the recording of a continuous
voltage signal along with a derived series of
spike times.
• The voltage signal, including units, labels,
 etc. is stored in a DataArray.
• The spike times are stored in a
 second DataArray.
• The spike train and neural response are
 linked together using a MultiTag.

Note: the model provides all
information to interpret the data
correctly

• The schema definition for HDF5 [2]
 represents all entities of the data
 model in a flat hierarchy.
• It was designed to be easily readable
 even without a special library.

This work was performed in connection with the activities of the HDF5
working group of the INCF Electrophysiology Data Sharing Task Force
Supported by BMBF grants 01GQ0801 and 01GQ1302

Contact: adrian.stoewer@rz.ifi.lmu.de

[1] Grewe et al (2011), Frontiers in Neuroinformatics 5:16
[2] https://github.com/G-Node/nix/wiki/Implementation-in-HDF5
[3] https://github.com/G-Node/nix
[4] https://github.com/G-Node/nixpy
[5]https://github.com/G-Node/nix-mx
[6] https://github.com/G-Node/nix-java

Block

+id: String
+type: String
+name: String
+definition: String
+metadata: Section
+sources: Source[]
+data_arrays: DataArray[]
+multi_tags: MultiTag[]
+tags: Tag[]

Source

+id: String
+type: String
+name: String
+definition: String
+metadata: Section
+sources: Source[] 0..n

1

Tag

+id: String
+type: String
+name: String
+definition: String
+metadata: Section
+references: DataArray[]
+position: double[]
+extent: double[]
+units: String[]
+features: Feature[]
+sources: Source[]

MultiTag

+id: String
+type: String
+name: String
+definition: String
+metadata: Section
+references: DataArray[]
+positions: DataArray
+extents: DataArray
+units: String[]
+features: Feature[]
+sources: Source[]

DataArray

+id: String
+type: String
+name: String
+definition: String
+metadata: Section
+label: String
+unit: String
+data_type: DataType
+data: NDArray
+dimensions: Dimension[]
+expansion_origin: Double
+polynom_coefficients: Double[]

Dimension

+index: int
+dimension_type: DimensionType

SetDimension

+index: int
+labels: String[]
+dimension_type: DimensionType

SampledDimension

+index: int
+unit: String
+label: String
+sampling_interval: double
+offset: double
+dimension_type: DimensionType

RangeDimension

+index: int
+unit: String
+label: String
+ticks: double[]
+dimension_type: DimensionType

Feature

+id: String
+link_type: LinkType
+data: DataArray 0..n

1

1

0..n

1

0..n

1

0..n

1

0..n

0..n

1..m 1..m

1

1..n

membrane voltage : DataArray

+type = analogsignal
+name = membrane voltage
+label = voltage
+unit = mV
+data = [s1, ... , sn]

1 : SampledDimension

+index = 1
+unit = ms
+label = time
+sampling_interval = 0.5
+offset = 0.0

neuron01 : Source

+type = subject/cell
+name = neuron01

spike response : DataArray

+type = spiketimes
+name = spike response
+label = time
+unit = ms
+data = [t1, ... , tn]

1 : SetDimension

+index = 1

MultiTag

+type = spiketimes
+name = neural response
+units = [ms]
+positions
+references

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

vo
lta

ge
 [m

v]

time [ms]

membrane voltage

0 5 10 15 20 25 30 35 40 45 50

time [ms]

spike response

neuron01
neural response

Libraries and language bindings

To read and write data from and to the NIX file format, even without deep
knowledge about the exact format specification, the NIX project provides
an IO-library written in C++[3]. The library supports major compilers and
operating systems such as Linux, OSX and Windows. Other programming
languages and platforms are supported via bindings to the C++ library for
Python[4], Matlab[5] and Java[6].

Adrian Stoewer 1, Christian Kellner 1, Jan Benda 2, Michael Sonntag 1

Andrey Sobolev 1, Thomas Wachtler 1, and Jan Grewe 1,2

1German Neuroinformatics Node, Department Biologie II,
Ludwig-Maximilians-Universität München, Germany;

2Institut für Neurobiologie, Universität Tübingen, Germany

General features

• All entities have a unique id, a name and a type.
• The id allows synchronization and identification of entities accross
 files.
• The name serves as a human readable identifier.
• The type provides semantic context. It introduces domain-
 specificity.

The architecture

• A generic data model as foundation of
 a flexible, yet concise file format
 specification
• NIX I/O libraries expose a generic
 programming model based on the
 original data model
• Domain-specific APIs can be implemen-
 ted based on the NIX libraries

