
2019-08-14-pfeiffer-1d-non-oriented-vs-oriented-axonal-trees

August 22, 2019

In [1]: # %load imports.py
%load_ext autoreload
%autoreload 2

1 A 1d analog of polar interneurons

The analogue of a spherical axon in 1dim is a connectivity within a certain radius r of the in-
terneuron somata. Correspondingly, the analogue of an ellipsoid, that is of an orientation, is a
connectivity that has an asymmetry with respect to the somata, that is one branch has length
(1 − λ)r and the other one (1 + λ)r.

The advantage of going to 1d is that from the Rosenbaum 2014 paper (Balanced networks of
spiking neurons with spatially dependent recurrent connections), we know that spatial patterns
should delevelop in such a network and can then study how this patterns change, when the in-
terneuron axonal morphology changes.

Another advantage is that in 1d, there are clear and simple difference between the two mor-
phologies in terms of connectivity. Namely, the profile of the number of common neighbors be-
tween two interneurons versus distance changes when making the axons more oriented. Circular
(non-oriented) axons have the highest number of common neighbors and this drops up to zero at
2r. Oriented axons have a lower number of common neighbors at small distances, but can then
share neighbors even distances exceeding 2r. Moreover, the orientation might induce a directional
bias, although the length of this bias will decay very fast when orientations are random.

Steps - connectivity matrix - activity - spatial analysis

1.1 Connectivity matrix

Neurons will be placed on a regular grid on a line from 0 to 1. Possibility of perturbing these
positions with some noise of spatial width χ. Then the width of the axonal branch σ has to be
chosen and each interneuron gets an ellipsoid index e ∈ [−1, 1]. For the start, we will assume that
e is the same for each interneuron, only changes sign in a random fashion. This gives the inhibtory
to excitatory connectivity. In the following, we assume periodic boundary conditions.

In [2]: import numpy as np

In [3]: def connect_interneurons_to_excitatory_neurons(in_positions, ex_positions, ellipsoid_indices, sigmas):
N_e = ex_positions.shape[0]

sigmas_repeated = np.repeat(np.expand_dims(sigmas, axis=1),N_e, axis=1)

1

ellipsoid_indices_repeated = np.repeat(np.expand_dims(ellipsoid_indices, axis=1),N_e, axis=1)
distance_to_right_end = (1+ellipsoid_indices_repeated)*sigmas_repeated
distance_to_left_end = (1-ellipsoid_indices_repeated)*sigmas_repeated

rel_position = np.repeat(np.expand_dims(in_positions, axis=1), N_e, axis=1) - np.repeat(np.expand_dims(ex_positions, axis=0), N_i, axis=0)

connected_via_right_branch = np.logical_or(np.logical_and(rel_position > -distance_to_right_end,rel_position <= 0), np.logical_and(rel_position-1 > -distance_to_right_end, rel_position >= 0))
connected_via_left_branch = np.logical_or(np.logical_and(rel_position < distance_to_left_end,rel_position >= 0), np.logical_and(1+rel_position < distance_to_left_end, rel_position <= 0))

return np.logical_or(connected_via_right_branch, connected_via_left_branch)

In [4]: N_e = 1000
N_i = 200
chi_e = 0.0/N_e
chi_i = 0.0/N_i
sigma = 0.1
e = 0.25

In [5]: ex_positions = np.linspace(0,1, num=N_e, endpoint=False)+np.random.normal(loc=0, scale=chi_e, size=N_e)
in_positions = np.linspace(0,1, num=N_i, endpoint=False)+np.random.normal(loc=0, scale=chi_i, size=N_i)

In [6]: ellipsoid_indices = e*np.random.choice([-1,1],N_i) #random
#ellipsoid_indices = e*np.ones((N_i,)) #one-sided

ellipsoid_indices_circ = np.zeros((N_i,))

In [7]: sigmas = sigma*np.ones((N_i,))

In [8]: in_ex_connectivity_ell = connect_interneurons_to_excitatory_neurons(in_positions, ex_positions,ellipsoid_indices, sigmas)
in_ex_connectivity_circ = connect_interneurons_to_excitatory_neurons(in_positions, ex_positions,ellipsoid_indices_circ, sigmas)

In [9]: import matplotlib.pyplot as plt

In [10]: plt.imshow(in_ex_connectivity_ell, aspect='auto')
plt.title('Ellipsoid')
plt.xlabel('Ex')
plt.ylabel('In')

Out[10]: Text(0, 0.5, 'In')

2

In [11]: plt.imshow(in_ex_connectivity_circ,aspect='auto')
plt.title('Circular')
plt.xlabel('Ex')
plt.ylabel('In')

Out[11]: Text(0, 0.5, 'In')

3

1.2 Network activity

In [12]: from brian2.units import *

Create the network

In [13]: dynamics_dict = {
"excitatory": {

"model": "placeholder",
"threshold": "v>v_threshold",
"reset": "v=v_reset",
"refractory": "tau_refractory"

},
"ex-in": {

"model": "w: volt",
"on_pre": "v+=w"

}
}

model_string = """
dv/dt = 1.0/tau* (-v + u_ext) :volt (unless refractory)
tau :second
u_ext : volt

4

v_threshold: volt
v_reset: volt
tau_refractory: second

"""

dynamics_dict["excitatory"]["model"] =model_string
dynamics_dict.update({"inhibitory":dynamics_dict["excitatory"]})

dynamics_dict.update({"in-ex": dynamics_dict["ex-in"]})

In [14]: experiment_dict = {
"duration": 10000*ms,
"excitatory": {

"tau": 10*ms,
"v_threshold": -40*mV,
"v_reset": -75*mV,
"tau_refractory": 0.0*ms,
"u_ext": -0*mV

},
"inhibitory": {

"tau": 5*ms,
"v_threshold": -40*mV,
"v_reset": -75*mV,
"tau_refractory": 0.0*ms,
"u_ext": -35*mV

},
"ex-in": {

"w": 0.4*mV
},
"in-ex": {

"w": -1*mV
},
"initial_condition":{

"excitatory": {
"v": '-75*mV+35*mV*rand()'

},
"inhibitory": {

"v": '-75*mV+35*mV*rand()'
}

}
}

In [15]: from interneuron_polarity.actions.simulate_network_activity import create_neuronal_populations_and_synapses, run_experiment
import brian2 as br

def run_1d_network(in_ex_connectivity, dynamics_dict, experiment_dict):
ex_neurons, in_neurons, ie_syn, ei_syn = create_neuronal_populations_and_synapses(dynamics_dict, in_ex_connectivity)

5

ex_neurons.v = experiment_dict["initial_condition"]["excitatory"]["v"]
in_neurons.v = experiment_dict["initial_condition"]["inhibitory"]["v"]

ex_spike_recorder = br.SpikeMonitor(source=ex_neurons)
in_spike_recorder = br.SpikeMonitor(source=in_neurons)

run_experiment(experiment_dict, ex_neurons, in_neurons, ei_syn, ie_syn, [ex_spike_recorder, in_spike_recorder])

excitatory_spikes = ex_spike_recorder.spike_trains()
inhibitory_spikes = in_spike_recorder.spike_trains()

return excitatory_spikes, inhibitory_spikes

In [16]: circ_ex, circ_in = run_1d_network(in_ex_connectivity_circ, dynamics_dict, experiment_dict)

INFO No numerical integration method specified for group 'neurongroup_1', using method 'exact' (took 0.22s). [brian2.stateupdaters.base.method_choice]
INFO No numerical integration method specified for group 'neurongroup', using method 'exact' (took 0.09s). [brian2.stateupdaters.base.method_choice]

Starting simulation at t=0. s for a duration of 10. s
9.8141 (98%) simulated in 10s, estimated < 1s remaining.
10.0 (100%) simulated in 10s

In [17]: ell_ex, ell_in = run_1d_network(in_ex_connectivity_ell, dynamics_dict, experiment_dict)

INFO No numerical integration method specified for group 'neurongroup_2', using method 'exact' (took 0.02s). [brian2.stateupdaters.base.method_choice]
INFO No numerical integration method specified for group 'neurongroup_3', using method 'exact' (took 0.02s). [brian2.stateupdaters.base.method_choice]

Starting simulation at t=0. s for a duration of 10. s
9.6926 (96%) simulated in 10s, estimated < 1s remaining.
10.0 (100%) simulated in 10s

1.3 Analyze activity

1.3.1 Raster plots

In [18]: from interneuron_polarity.actions.plot_network_activity import plot_spiking

Early

In [19]: fig=plot_spiking(N_e, N_i, circ_ex, circ_in, t_start=0, t_end=200)
_=fig.suptitle('Circular')

6

In [20]: fig=plot_spiking(N_e, N_i, ell_ex, ell_in, t_start=0, t_end=200)
_=fig.suptitle('Ellipsoid')

Late

7

In [21]: fig=plot_spiking(N_e, N_i, circ_ex, circ_in, t_start=8000, t_end=8200)
_=fig.suptitle('Circular')

In [22]: fig=plot_spiking(N_e, N_i, ell_ex, ell_in, t_start=8000, t_end=8200)
_=fig.suptitle('Ellipsoid')

8

1.3.2 Rate distribution in space

In [23]: from matplotlib.gridspec import GridSpec

In [24]: def isi_to_rate(isi):
rate = 1.0/isi
rate[np.where(isi==0)] = 0*hertz
return rate

In [25]: fig = plt.figure(figsize=(10,5))

grid = GridSpec(2,2)
ax = fig.add_subplot(grid[0,:])
ax_ex = fig.add_subplot(grid[1,0])
ax_in = fig.add_subplot(grid[1,1])

spike_times = circ_ex
positions = ex_positions
label='circ ex'
color='red'

isis = [np.ediff1d(spike_times[neuron_idx]) for neuron_idx in sorted(spike_times.keys())]
mean_isi =[np.mean(isi) for isi in isis]
ax.plot(positions, mean_isi/ms, '.', color=color, label=label)
ax_ex.plot(positions, isi_to_rate(np.array(mean_isi))/hertz,'.', color=color, label=label)

spike_times = circ_in
positions = in_positions
label='circ in'
color='blue'

isis = [np.ediff1d(spike_times[neuron_idx]) for neuron_idx in sorted(spike_times.keys())]
mean_isi =[np.mean(isi) for isi in isis]
ax.plot(positions, mean_isi/ms, '.', color=color, label=label)
ax_in.plot(positions, isi_to_rate(np.array(mean_isi))/hertz,'.', color=color, label=label)

spike_times = ell_ex
positions = ex_positions
label='ell ex'
color='orange'

isis = [np.ediff1d(spike_times[neuron_idx]) for neuron_idx in sorted(spike_times.keys())]
mean_isi =[np.mean(isi) for isi in isis]
ax.plot(positions, mean_isi/ms, '.', color=color, label=label)
ax_ex.plot(positions, isi_to_rate(np.array(mean_isi))/hertz,'.', color=color, label=label)

9

spike_times = ell_in
positions = in_positions
label='ell in'
color='green'

isis = [np.ediff1d(spike_times[neuron_idx]) for neuron_idx in sorted(spike_times.keys())]
mean_isi =[np.mean(isi) for isi in isis]
ax.plot(positions, mean_isi/ms, '.', color=color, label=label)
ax_in.plot(positions, isi_to_rate(np.array(mean_isi))/hertz,'.', color=color, label=label)

ax_ex.set_xlabel('x')
ax_ex.set_ylabel('r_ex (Hz)')
ax_ex.legend()
ax_ex.set_ylim(0,40)
ax_in.set_xlabel('x')
ax_in.set_ylabel('r_ex (Hz)')
ax_in.legend()

ax.legend()
ax.set_xlabel('x')
ax.set_ylabel('<ISI> (ms)')

ax.set_ylim(0,500)

WARNING /home/pfeiffer/Applications/miniconda2/envs/head_direction/lib/python3.7/site-packages/brian2/units/fundamentalunits.py:227: RuntimeWarning: Mean of empty slice.
return Quantity(func(np.array(x, copy=False), *args, **kwds), dim=x.dim)

[py.warnings]
WARNING /home/pfeiffer/Applications/miniconda2/envs/head_direction/lib/python3.7/site-packages/numpy/core/_methods.py:85: RuntimeWarning: invalid value encountered in double_scalars

ret = ret.dtype.type(ret / rcount)
[py.warnings]

Out[25]: (0, 500)

10

Distribution of inhibitory input in space The ellipsoid axons generate a spatially heteroge-
neous input, that produce the ups and downs of the excitatory firing rates. The inhibitory axons
mimic this, but depending on their orientation, they are a right shifted, respectively left shifted
version of the excitatory profile.

In [26]: fig = plt.figure(figsize=(10,5))

ax= fig.add_subplot(111)

ax.plot(ex_positions, np.sum(in_ex_connectivity_circ, axis=0), '.')
ax.plot(ex_positions, np.sum(in_ex_connectivity_ell, axis=0), '.')
ax.set_xlabel("x")
ax.set_ylabel("Number of inhibitory inputs")

Out[26]: Text(0, 0.5, 'Number of inhibitory inputs')

11

1.4 Spike counts

In [27]: from interneuron_polarity.analysis.spike_trains import spikecounts

In [28]: dt = 50*ms
t_start = 0*ms
t_end = 10000*ms
times = np.arange(t_start, t_end+dt, dt)*second -t_start

circ_ex_counts = spikecounts(circ_ex, dt, t_start, t_end)
circ_in_counts = spikecounts(circ_in, dt, t_start, t_end)

ell_ex_counts = spikecounts(ell_ex, dt, t_start, t_end)
ell_in_counts = spikecounts(ell_in, dt, t_start, t_end)

1.4.1 Rates in space and time

In [29]: fig = plt.figure(figsize=(12,8))

grid = GridSpec(2,2)

ax_circ_ex = fig.add_subplot(grid[0,0])
ax_circ_in = fig.add_subplot(grid[1,0])

ax_ell_ex = fig.add_subplot(grid[0,1])
ax_ell_in = fig.add_subplot(grid[1,1])

12

min_idx = 0
max_idx = 40
im = ax_circ_ex.imshow(circ_ex_counts[:, min_idx:max_idx]/dt/hertz, aspect='auto', extent=(times[min_idx]/ms, times[max_idx]/ms, 0,1))
fig.colorbar(im, ax=ax_circ_ex)

im = ax_circ_in.imshow(circ_in_counts[:, min_idx:max_idx]/dt/hertz, aspect='auto', extent=(times[min_idx]/ms, times[max_idx]/ms, 0,1))
fig.colorbar(im, ax=ax_circ_in)

im = ax_ell_ex.imshow(ell_ex_counts[:, min_idx:max_idx]/dt/hertz, aspect='auto', extent=(times[min_idx]/ms, times[max_idx]/ms, 0,1))
fig.colorbar(im, ax=ax_ell_ex)

im = ax_ell_in.imshow(ell_in_counts[:, min_idx:max_idx]/dt/hertz, aspect='auto', extent=(times[min_idx]/ms, times[max_idx]/ms, 0,1))
fig.colorbar(im, ax=ax_ell_in)

ax_circ_ex.set_ylabel("x")
ax_circ_in.set_ylabel("x")

ax_circ_in.set_xlabel("t(ms)")
ax_ell_in.set_xlabel("t(ms)")

ax_circ_ex.title.set_text('Circular')
ax_ell_ex.title.set_text('Ellipsoid')

13

1.4.2 Spatial frequencies

Spectral analysis with unequally sampled data https://joseph-long.com/writing/recovering-
signals-from-unevenly-sampled-data/

Here is how to get the phase as well https://stackoverflow.com/questions/49859075/lomb-
scargle-phase

A better lomb scargle from astropy https://docs.astropy.org/en/stable/timeseries/lombscargle.html

In [30]: import scipy.signal as scs

In [31]: def get_spatial_periodogram(positions, spikecounts, spatial_frequencies):
powers = [scs.lombscargle(positions, count, 2*np.pi*spatial_frequencies, precenter=True) for count in spikecounts.T]
return np.vstack(powers).T

In [32]: spatial_frequencies = np.arange(0.1,40,0.1)

In [33]: circ_ex_spatial_powers = get_spatial_periodogram(ex_positions, circ_ex_counts, spatial_frequencies)
ell_ex_spatial_powers = get_spatial_periodogram(ex_positions, ell_ex_counts, spatial_frequencies)

In [34]: random_power = scs.lombscargle(ex_positions, np.random.randint(np.min(circ_ex_counts),np.max(circ_ex_counts), ex_positions.shape[0]), 2*np.pi*spatial_frequencies, precenter=True)

In [35]: plt.plot(spatial_frequencies, np.mean(circ_ex_spatial_powers, axis=1), label='circ')
plt.plot(spatial_frequencies, np.mean(ell_ex_spatial_powers, axis=1), label='ell')

plt.plot(spatial_frequencies, random_power, label='random')
plt.axvline(1.0/(2*sigma), color='k', label="1/2*sigma")
plt.legend()
plt.grid()

plt.xlabel("Spatial frequency")
plt.ylabel("Power (a.u.)")

Out[35]: Text(0, 0.5, 'Power (a.u.)')

14

In [36]: circ_in_spatial_powers = get_spatial_periodogram(in_positions, circ_in_counts, spatial_frequencies)
ell_in_spatial_powers = get_spatial_periodogram(in_positions, ell_in_counts, spatial_frequencies)

In [37]: random_power = scs.lombscargle(ex_positions, np.random.randint(np.min(circ_in_counts),np.max(circ_in_counts), ex_positions.shape[0]), 2*np.pi*spatial_frequencies, precenter=True)

In [38]: plt.plot(spatial_frequencies, np.mean(circ_in_spatial_powers, axis=1), label='circ')
plt.plot(spatial_frequencies, np.mean(ell_in_spatial_powers, axis=1), label='ell')

plt.plot(spatial_frequencies, random_power, label='random')
plt.axvline(1.0/(2*sigma), color='k', label="1/2*sigma")
plt.legend()
plt.grid()

plt.xlabel("Spatial frequency")
plt.ylabel("Power (a.u.)")

Out[38]: Text(0, 0.5, 'Power (a.u.)')

15

1.5 Intermediate summary

• Rosenbaum shows that in a spatial network with no recurrent connectivity there is no dy-
namic balance possible

• their results indicate that instead certain fourier modes stabilize so that the system has a
spatial output profile

• although they have a more complicated connectivity rule, I tried to reproduce the periodicty
in the spiking output

• my idea was to contrast this periodicity with spatial profiles in the case of ellipsoid axons
• my spatial analysis indicates spatial periodicity in the circular case (double check), however

it is not stable and moves across the tissue
• with the 1d analogue of the ellipsoids this spatial profile dissolves and new spatial hetero-

geneity emerges, because inhibition is distributed in a non-uniform way
• I think the spatial periodicity only comes in when inhibition is strong enough to bring the

excitatory neurons below threshold, it requires the non-linearity of the excitatory neurons
• in the same way that asymmeric (ellipdoid) connections affect the spatial periodicity, so does

noise in the neuronal positions
• a network with ellipsoid axons that all show in the same direction preserves the spatial

periodicity

Questions

• what about noisy input, mimic Rosenbaum setup with spatially shared input noise
• look at correlations where mean firing is substracted

16

• better understanding of the necessary input strengths and synaptic weights
• could one study the asymmetry alone by generating two inhibitory populations one with

right directionality and with left directionality? how would such a network behave?

Notes on input strength

• when total excitatory drive > inhibitory drive (that is E fire more often than I) , then spa-
tial differences stem from the unequal distribution of inhibition experiment_dict = { “du-
ration”: 10000ms, “excitatory”: { “tau”: 10ms, “v_threshold”: -40mV, “v_reset”: -75mV,
“tau_refractory”: 0.0ms, “u_ext”: 0mV }, “inhibitory”: { “tau”: 5ms, “v_threshold”: -40mV,
“v_reset”: -75mV, “tau_refractory”: 0.0ms, “u_ext”: -41*mV

}, “ex-in”: { “w”: 0.05mV }, “in-ex”: { “w”: -0.4mV }, “initial_condition”:{ “excitatory”: { “v”:
‘-75mV+35mVrand()’
}, “inhibitory”: { “v”: ’-75mV+35mVrand()’
}
} }

• but this behaviour persists even when E fire less often than I

• more important seems to be, to be in the non-linear regime, where ensembles of excitatory
neurons can silence other ensembles experiment_dict = { “duration”: 10000ms, “excitatory”: {
“tau”: 10ms, “v_threshold”: -40mV, “v_reset”: -75mV, “tau_refractory”: 0.0ms, “u_ext”: -0mV
}, “inhibitory”: { “tau”: 5ms, “v_threshold”: -40mV, “v_reset”: -75mV, “tau_refractory”: 0.0ms,
“u_ext”: -35*mV

}, “ex-in”: { “w”: 0.4mV }, “in-ex”: { “w”: -1mV }, “initial_condition”:{ “excitatory”: { “v”:
‘-75mV+35mVrand()’
}, “inhibitory”: { “v”: ’-75mV+35mVrand()’
}
} }

1.5.1 Questions to Farzada

• how well do you think this provides an analogue of the 3d case? how well do these findings
apply to the 3d case?

• how can I characterise the network? what input strengths and synaptic weights have to be
tested for?

• do you think that this is an interesting network to start with in the circular case?

1.5.2 What is the purpose of the model?

The experimental finding of this unusual axonal morphology (and the non-trivial connectivity
rule) stands in contrast to the usual belief of the homogeneous blanket of inhibition. So the model
should adress the question how the unusual morphology affects current believes about the role of
interneurons and the way they shape network activity.

So I should read up some Yuste work to see how they connect the blanket of inhibition hypoth-
esis with dynamics of networks and the functional role of interneurons.

I still require a starting point, so ideally the network with a spherical axon morphology gener-
ating some known and relevant dynamics. Then I could study how deviations in the morphology
affect this dynamics.

17

Possible starting points are - head direction tuning by recurrent inhibition - the shepston paper
about the subiculum - the yuste paper about the blanket of inhibition hypothesis - the rosenbaum
paper about the effect of spatially structured connectivity on network dynamics especially dy-
namically balanced states

The first seemed to be hard to connect, because these networks mostly live in feature space
and it is not clear how their connectivity fits to the spatial connectivity rules that we had found.
However, rethinking what I observed so far, maybe one could use the directionality of the asym-
metric neurons to build structurally similar networks, but this is not possible with the symmetric
ones in the circular case.

The second and third, I still need to read.
The Rosenbaum paper start at least from a very similar perspective, they look at states a net-

work can be in for given spatial connectivity rules. Their setup is slightly more complex, but it
seems to be a valid question to see whether their analysis applies to our network as well. What
could be the function? Can I go back to a balanced state with inhibitory axons that distribute
inhibition more broadly? Probably not, because their is no recurrent excitation.

18

	A 1d analog of polar interneurons
	Connectivity matrix
	Network activity
	Analyze activity
	Raster plots
	Rate distribution in space

	Spike counts
	Rates in space and time
	Spatial frequencies

	Intermediate summary
	Questions to Farzada
	What is the purpose of the model?

