{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Aim\n", "\n", "The prevalence of the interneuron hub mircorcircuit led us to the hypothesis that the interneurons mediate lateral inhibition. For effective lateral inhibition, the more active excitatory neuron has to be less sensitive to the inhibitory inputs than the less active one. This difference in sensitivity could stem from the timing of inhibition. The more active neuron is more likely to produce a spike in the interneuron, so that it receives the inhibition at a short time after spiking. In contrast, the less active neuron has a high chance to receive the inhibition in a later phase. How this timing of inhibition translates into sensitivity depends on the neuron model. Generally, however, most neuron models are less senstive to input directly after the spike than input in the middle of the phase.\n", "\n", "We demonstrated the lateral inhibition with a model of Hodgkin-Huxley dynamics. Here, one important factor for the difference in senstivity is the relatively strong after-hyperpolarisation. When the membrane is hyperpolarised, inhibitory conductances cannot further inhibit the neuron, so that their effect is diminished. However, most pyramidal cells exhibit a reduced after-hyperpolarisation. Therefore, we would like to test the robustness of our results in more pyramidal-like neuron models.\n", "\n", "For a different neuron model, I read Pospischil, 2008, an article claiming to provide model classes for four different neuron types (regular spiking, fast spiking, bursting and low threshold spiking). However, for their model fitting, they focus more on **spike timing** (\"The error function consisted of a weighted sum over the absolute value of the differences in the time of the first spike after DC onset, the first, second and last interspike intervals, all values taken at three different DC levels\" and \"In order to avoid that an (experimentally) unreliable feature strongly impacts on the error function, we chose the weights wi to be the inverse of the SD of the experimental values. Large SDs thus lead to a reduced contribution to the error. However, in order to prevent an error that predomi-nantly consists of the contribution of a very reliable feature, we introduced a cut-off: whenever the SD of a given feature was smaller than 3% of the mean experimental value, the weight was taken as the inverse of these 3%, rather than as the inverse of the SD itself.\"). In almost all figures, there is a clear difference between the experimentally observed spike shapes and the modelled ones. \n", "\n", "1. Pospischil, M. et al. Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biol. Cybern. 99, 427–441 (2008).\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Brian2Model Fitting\n", "I thought one interesting route could be to use Yanfangs recordings to do a custom fitting that puts more emphasis on the spike shape. For this reason, I will try the [Brian2 model fitting toolbox](https://brian2modelfitting.readthedocs.io/en/stable/index.html).\n", "\n", "Installation\n", "\n", "pip install brian2modelfitting did not work for me, because I did not get the right nevergrad version, which was related to this bug https://github.com/brian-team/brian2modelfitting/issues/24. So I cloned the repro and installed it from there." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Generate target dynamics" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from brian2.units import *\n", "import brian2 as br" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "area = 20000 * umetre ** 2\n", "hodgkin_huxley_params = {\n", " \"Cm\": 1 * ufarad * cm ** -2 * area,\n", " \"gl\": 5e-5 * siemens * cm ** -2 * area,\n", " \"El\": -65 * mV,\n", " \"EK\": -80 * mV,\n", " \"ENa\": 50 * mV,\n", " \"g_na\": 100 * msiemens * cm ** -2 * area,\n", " \"g_kd\": 30 * msiemens * cm ** -2 * area,\n", " \"VT\": -63 * mV\n", "}\n", "\n", "hodgkin_huxley_eqs = '''\n", "dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I )/Cm : volt\n", "dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/\n", " (exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/\n", " (exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1\n", "dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/\n", " (exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1\n", "dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/ms*h : 1\n", "'''\n", "\n", "I_eqs = '''\n", "I: amp'''" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "inputs = [0.2*nA, 0.5*nA]\n", "dt = 0.1*ms\n", "duration = 100*ms\n", "\n", "br.brian_prefs.dt = dt \n", "number_of_inputs = len(inputs)\n", "\n", "neuron = br.NeuronGroup(N=number_of_inputs, model=hodgkin_huxley_eqs+I_eqs, method=\"exponential_euler\", threshold=\"v>-40*mV\", refractory=\"v>-40*mV\")\n", "\n", "trace_monitor = br.StateMonitor(neuron, ['v'], record=True)\n", "net = br.Network(neuron)\n", "net.run(100*ms, namespace=hodgkin_huxley_params)\n", "\n", "v_eq = neuron.v[0]\n", "m_eq = neuron.m[0]\n", "h_eq = neuron.h[0]\n", "n_eq = neuron.n[0]\n", "\n", "net.add(trace_monitor)\n", "for neuron_idx in range(number_of_inputs):\n", " neuron.I[neuron_idx]=inputs[neuron_idx]\n", " \n", "net.run(duration,namespace=hodgkin_huxley_params)\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(100, 200)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD8CAYAAAB6paOMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXecnEX9x9+z5e7SA+khFQgkEEIxdFR6F1A6IogoKmBXFPmhoCLYKIqISFVAepfeOym0kISQ3nu5y/Ut8/tj9tl9ttztU2Y2c5f9vF557W17nm9mZ+bbPt/vCCklVVRRRRVVbL2IbGkBqqiiiiqq2LKoKoIqqqiiiq0cVUVQRRVVVLGVo6oIqqiiiiq2clQVQRVVVFHFVo6qIqiiiiqq2MpRVQRVVFFFFVs5qoqgiiqqqGIrR1URVFFFFVVs5YhtaQHcGDhwoBwzZsyWFqOKKqqookth+vTp66SUg4J+3ypFMGbMGKZNm7alxaiiiiqq6FIQQiwO8/1qaKiKKqqoYitHVRFUUUUVVWzlqCqCKqqoooqtHFVFUEUVVVSxlaOqCKqooooqtnJUFUEVVVRRxVaOqiKooooqqtjK0f0UQaIl/CVSaeatadQgTAE2LIA2A9ft7vjsOdi0dEtLoRUL1jbSnkybvcma2dCyyew9qqgsNi4ysha6lyKoXw5XDYWpt4W6zF+e/4zDr32NxeubNAmWwV/3hHtO1XtNS7CyvoVkytDGdu9p8I8DzVw7LJZOgZUf+/pKfUuCQ//yGpc+MsOQUBnctB/cerjZewTFHcfC/Wd7/nh9S4L65oRBgVx44Vcw78XK3Msvbtgdrp+o/bLdSxE0r1OPU/4V6jIfL1NW1OL1zWElyiGVVI9L3tZ3TV1oa4R/HBR43NY0tLL/1S9z7QufaRbMhbZ6c9cOg9uOgH9+3tdXEhmF+fzMVSYkysf6uebvEQSL34LZT3r++O5XPs8ev33eoEAuvHUD3H1yZe5lCbqXIojWqsf6ZaEu06dOdd5obEuGlSiHZPiQlTE0robVM+Dpnwb6+swVDQB8uNRAGCKd0n9NXUgFs1DTUgKwWef86saQmfHKPFRhAN1LEchMaKJ9c6jL9KmLA7C5VaMrqiF3YStWNbQCsF3/HvovHnCzrQg2rwz0tVS6uqP5gVaDrIqS6GaKQI/16HgEDS0aJ6DNikCGi+07Fq6R7S1tsSJIB5sfyVQFFEHacCI6DBKtvj5eVZzm0b0UgaYwQl08CkBbUmNYolsrAvWYMJEsttkjCBirqMjGpskoMoJWf/meqh4wj+6lCEJuaA6ElqsUIKEx8awbIYOvTgzXCB0yoNVdEQRVBJUIdludW2nz9fF0NTlQjJTedVFVBCUgMppA6/xL+nOHK4qQ4ya3Vo8gYDBsq/cIfC6siuoBd0jNNgXkVu4JvdT27qUINFtBCZ0L1mqPQE+OoM2IR2CxIgg4bpXJEdisCFzj5kFOWckN2S2bbUaI25isegSdQJNH4Bi2Wgukkv7c4coi3EKr5gj8oSKhDndIzTbL1r1OPeTO3NIbK1rM3sytCNrN3ssv3El2zSHTbqYI9FhBzkJN6vQIbFuMboQODWXGy4Sla7UicFu23sdQ67zqCD6t7i0GDx6fW3Ea8TrdsFkRuHMrtioCIURUCPGBEOKpzPOxQoj3hBBzhRD3CyFqdN2rQ2ia8M6GptXC1eStGIGmHEG7CWutq4SGfOSAUpWgdrrXgm1j6FNJufWm8f5MbmPSNiMkb9wsVQTAD4DZrud/AK6TUo4DNgLna7xXaWgLDanr6LVwbfYIQrKGMMga0hwL1QvXuPlYmBXJEVi9obnHzV+OYKv2CGxXBEKIEcBxwK2Z5wI4FHgo85G7gJN03KtTaAoNOa57UqflZnVoyN/CLIRjsRn5L7qtWdtCHAEXZsXpo7ZRcH2Om3u4tK7JkjezWRGEW6edQZdHcD1wCeCM4gBgk5TS+ZWXAduV+qIQ4gIhxDQhxLS1a9eGk0LTAnNikgmdlltXCQ0FSGo742UkCeq2Zm22bH38vhWnj9q2ofn0pPL2P9PLKN1Vxk3vWgitCIQQxwNrpJTT3S+X+GjJ2S+lvEVKOVlKOXnQoEHhhNGcI9C7YC32CNyyBfCqnIVqvMVEF7dsHVQkWZy2OTTkb9zcBoZxb8p9fdsUgcHQUEzDNQ4EThBCHAvUAX1RHkJ/IUQs4xWMAFZouFfn0BQachSA3mSxzP9bGKlfDoaQDBNZKY/AuqRnMFc9Vek6AuvGLV367w6QpwgqGRpK2qYIguWkvCC0RyClvFRKOUJKOQY4A3hZSvlV4BXglMzHzgUeD3uv8sLoocxlcwRaQ0Pm4nuh4XNhFn3daI4gVfpvKxDMk0rlbWyGlEJeaMg2T8pnaMj1t+kygrxxs80DdcPSHEEp/Bz4sRBiHipnEO7YMC/Q5A47C1VvYsqcNg8NTcliM4VSblfdYsvWT7LYtfkbKcIDu2PdvpPFufGqaLLYtjYdBj0CHaGhLKSUrwKvZv5eAOyj8/rlBUiV/tsnUtk6AlMegW2KIJxH4CgAI9at1eMWLIvpzhEYyxdIi0NDNieLbS7Es50+ag00hV/M0EfN/YjhETJZnHlMG9nUzDElQiOwR5D7nrGWCWmbQ0PBC8q2ao/AYFSheymCtCaPIDPZtHoE6FFSRqApWWyE0ZHH67Z4Q/OTI3C32jGVOLZ5Q/NpsLlDjsb7NNmck8pjNFUVQccI2PulEM7a1GqtWR3iCLdpOP+1rS40FNBCy/MITFm4bnls3tD8FpSZZlxVQ0PdALpyBJnFqdchsDg0FDpZbDBH0GVCQ97HzZ0XMMYa0uQdG0FXqSOwbdyqoSGP0OTWOXNBb8zbYss2YIWsA2eYjCQ+DbrDoRFQgVYk+SktDnGEWAvGq7JtHjeb6wisgqa4qBEL1+YQR9g6gszCNpIstjrWHUy2PF68KQu3y3gE/nIE5hWBzZ67ubBVN1MEmj0CnYvU5thjyES2NOkRuGHbuAXcNGQlNra8tWBZnyuf4Rf3EFVUEVjXH6zqEXhDWo/16Ay3sV5DNlsagZLFBltMdJmYbcDQkDGPoIt4Uj4LyirrEdg2bubyZd1LEWhiDTnrW6vb3lVCQyEqi814BDbTboP9ppXZ2GweN7/J4tzfxhVBN2rf7QfdTBHoiYtm2yprzRHYHHsMZ3U74yWlgTyB1TmCYEn2imxsNo+bbyVVSdZQFxk3zWGr7qUIdLGGMo/GJp1tsceQnlQesUf3mFW0v4BPBM0RuP42FhrqKk0OfVYWmw8N2Txurr81r4XupQg0afNszFtrzzmbJ5ieHAGYWKgW5wgChtQqHhqyzvDwF1JLV6LuwoGmqIIRGPRWupki0OwRmAoN2TbBQm4aRi02mxWoBiW1dXoEPiuLXX8bZ6bZnCw2mPfpZopAVx2BetQb5rDZQgvZa8hkDNdmBRowNJTPi9cpkAtdZdw80Udz42WmsaELNisCgwy6bqYIXH+HYg2ZSBZ3EQstULI497f+07e6yLj5mG/SpAeVu0vuT9vGza9sro9X1COwWoFWcwQdQ1eOIPOolz5q8wTTU1AGhpPF1o1bF0kW2zxuno6qdP9dSfqoZeNWDQ15hZ6BMtNErYuwXwIdVVmhZLHN4+arjiD3d0Xoo7ZtaCHaUFe2+6jNNO+qR9AxNFlBRprO2WyhhVSgRnvB2OxJBcz7VKabZhfJSXmQrSIeVPZmFreYqPYa8ghNA5Xtr781JotDnEcAWxlrSINyN5b8tHncfLKtKtt0rvuMmx90L0WgaaCcq+itI7DZVQ97ZrH7762pjiDYplGZpnM2j5vPtWAyB1V0L4s90GpoyCPyBir4hDFy9KLVCzNkshiDG5vNFlpABVqRpnM2s4Zspo/a3Byymiz2CN2hIWPJ4q69MIu+nrexaZCno4tbp0CDzbf8AjyN8rhh9bj5IwCkTc6vQnQZw8MyRSCEGCmEeEUIMVsIMVMI8YPM69sKIV4QQszNPG4TXtxy0BUaMmCBdJkkVJDQkCz5tx5YzBoKON+MFuC57pKF1Ruah2TxlmpDbd06NbcWdHgESeAnUsoJwH7ARUKIXYBfAC9JKccBL2Wem4UmbZ5nselaqHnUB8sWZkgFWrFksXWWrYbQUEW6j1q2obnh82Aa46whmxWozcliKeVKKeX7mb83A7OB7YATgbsyH7sLOCnsvcoLo7fpHOjc2LoIa8hm+qhtCzNostj1d0WSxdaNm9/fdAt5BLblCLpKslgIMQbYE3gPGCKlXAlKWQCDO/jOBUKIaUKIaWvXrg0pgZ7Jb4S33I3ZCGZ53l3FIwjIGqpIHYFt4+aXPpr72zxrqIuMm63JYiFEb+Bh4IdSygav35NS3iKlnCylnDxo0KBwQujSmCZCHVZbaGFDQ1XWUNBeQxUJDVk9bjazhiwbN5tDQwBCiDhKCdwjpXwk8/JqIcSwzPvDgDU67tUptOUI3BMvjEBu2GxphAwNub++NXkENieLrbZs/SaLc38bY1llb9Z9FKgf6GANCeA2YLaU8lrXW08A52b+Phd4POy9ykNvQRnoTBZ3kQkWKDTk9gh0COS+uKZzqE1AA33UnIXbVSxbL/RRk6y0AlitQM3lCGIarnEg8DVghhDiw8xrvwSuAR4QQpwPLAFO1XCvzqHJIzDCgtFU7GYG4cbNKKujyyxMPzmC3N+VqSzuHgoUqqyh3J+WKQIp5ZuA6ODtw8Je3x/0bBpmLBCbNzSNBWVGu4/aNm5BWUPu0JBOgdw3sdkD9ZssriRrqIusU9tCQ1ZBc2UxaDwIo6sszEDnERiMeXeVhenHQqt0aMjmcfOSLDaagyqAc30RtZw+WlUEHcOAO6yvsriLLMxATecqUEcgIvYpUJvbUHcFtpWIeloLFam7yN4sI1s0bt+4VXsNeYWESCbaFcojkEQjKtplpKDMtgkWNjTk+tsYaygSszjWLXx2H4WY9vlV4iYAkbh9hof7N/XUa8ggGaEIXWG+UfUIOoVMq4kPIXMEroWqkzUkorm/rUJerML3t/PGSztrKPMYiVmoQN2bhr/KYsfQMB4a8rjZVhTS52ab+Xg0IioXGrJ5vomodsJJN1MEmjwCJPGoGhqtoSFHNtsUQehksSQWNWXhBttsK4KAYQRpwtAodROwdNycnd2bbM7mH4uICoeGLMsRYE5JdS9FgISIY3WHSxZHTSxUDUrKCEIniyEWyShO7cnizMK00kJzyeZjvqWlJGLaI8jKFrV73DxVFqvHeDRivsWE1YaHo0D1h/u6lyKQaTVIEModlhiI4cq0Sngi7J1gAWVLu3IqxuoIIjHLLTR/802gjA3jvYYMbBrh4S9/4dBtoxGRx1Azgq4QGjKg3LuZIpCuOHy4ZLET6tAWXpUShOgWFlrR1yXEt+bQkM/EopQSIQRRIcwfTGPlhuYvpOZMqYqGhmxMFhtcC91LEWRDQ/5YHEVXcYU69FlsGUXgkTJXUbjDCAHpo2Y9AkeBWrYwQySLIwIiEZO8+K6gQD3ON5nzCCrGGrIxR2BQSXUvReDeNEL2GtJOH5Vpl2yWbWhIFbYSwWTLU5wmeg0JoeSzbkNzJT199RpyewSmcwRdnzXkzhFUWUMY+U27nyJwrO6Q3UezoSFt9FGZ29CsW5iZ/EXAsJViWZlKfro9AtsWZrBksZQqRxAxGeqwmjXkN1mcYQ1FKx0asmzcsl6e/qhC91IEaPIIjBT8uK1uyyaY460EtLrTplhWkK/cbRs3d9LT5wllQpjmxVts2fpNFleyjsDq0FCVPuoNeR5BCNaQlEQjuusInNCQha0SpAznEchc3YWRZHEI2YwicLKYyoWGPHL1Kwqf1FZn849HIpVrOheJ2+m5g5FqcR1tqO2BE0+OhIsn59FHdYeGsNCydUJDAa1ut0dgpo5ABM5fGEU2J+VPuUsps6EhYxau1bFuF2vIx28arQhryOKQWl5oyLI21HYhszBD5gikxEClrGvTsG5DcxRo0GSxzCpO7TmCLO3WRk8qHShslf0vYXJj85eQrSic/7LnZHEuR2D+KA9zXP3QqNYReIQ7xBG2jkC3hevIZmUXTVyyBTu8PuaEhrQvVJdyt9FCy843H6EhJBEhiEaEvjbnJUQD7PYIfFYWx4wW4GVgc4uJvNBQlTXUMdwWWqheQ276qAHZrLPQ3OGXkJXFRjwCi3MEAZR7OssaqkSLCZtDHN5kk1lFUOEcgc3jVvUIOoMe1lBaShcv3kBoyLoNzdlsg8mWV1m8NbGGAirQvGSxsX2tC+QIfCaLY9EKsoa6UQGjF3QvRZANv4RlDWGgjgC76aMhNluVLDbIGrK2jsDtrfgLDUEmWbxV1hEEC/dVJlnsTmTbNm7hOgB0hm6mCAywhrQ2nbN1Qwsnm5SSuOnQkK0htSBVz1JN0cpUFts637wrUGdOxaOVpo9aliNwUA0NlYMe1hBG6JCObBayhkIWu+WxrEzQR7MBdcs2NAiUv0hLiUBUoPuoxTkpJ7fio8VErCIH01h8VGU1NOQRmlhDqsWE5lCH7bHu7Lj5//8aTRbbzBoKWH+RV1lsMjRkK+0224DRmyflhNIq0mLCYBuH0MhTUl0sNCSEOFoIMUcIMU8I8QujN9PUa8h8aMhCCw2h5AvUawgEgojIWW/6ZJNYHVIL0EjQ6TVk3COwOifl3ZNy5lREVKCOwObK4q7aa0gIEQX+DhwD7AKcKYTYxdwd3ayhsC0mDISGsu6wbQsz3Kahumma2ths3tBclq3PXkMRIYgYzxHYqkB9enlG51fhvWyuIzBXJGjaI9gHmCelXCClbAfuA040dreAC7PoMhg4jD1kh0+jCNt9VOY2Nv3JYveGZpmFFrA2JJ1xCYw2UesqoUiPHkHEdG+mnHDqwUq2VWaOhc2BloBpRbAdsNT1fFnmtSyEEBcIIaYJIaatXbs23N3yWiWEbTGh+WCavHiybRtauE1Dui02Uy0mbPSkspXFPg0PJzRkdGMLRm2tCPLmm7cWE9neTMZZQ5lHGw02g8ePmlYEosRreb+klPIWKeVkKeXkQYMGhbxdeNaQcyaq9t45eUwJCyeYiASmpeVZbCZCQ9aGOIImi9XBNBGTR1OErBY3C3eYtPwAOKE0M/Or8GYFHT7NNzfyDoOHDZlWBMuAka7nI4AVxu7mTiwGnPzu3udg4PB6aze04JutUYstZP7CKALG4VUozXDM22bWkLvex2tlsXAO8jEunHqIxjNPLfKmDBa7mVYEU4FxQoixQoga4AzgCXO3c1kaASd/tvd5JjSkv+mcjaGhcAfTZFsmmNjYrC7EC6aknDoCo8lisFiB+k0WO4rTQJvzkrKh5hvYNecMNp0z2oZaSpkUQlwMPAdEgdullDPN3TB873pnmpnxCDJWULJdzzV1QcPBNBGh3Hf9+5rtdQT+E9mOsW42WWwza8hvslhWLlnsTsiCXXPOZ9dWPzB+HoGU8mngadP3ydws9Gab63So+2CacIe/GEXIXkNOgVREmGgxQaDNtjLwF+t2fQsw3WLCYtYQ/mRzurUKUaGmc06+DOyikGbj1tXK4jIIH092qhi1V8r6LKuvKELmL7IWm5GmYF2h/sKfbFm6rdEmau4ku83zzUOy2CEjVIQ15PKkwC5vyh0a6mL00cpCgzvsKN3cGbwaZbM1WZynQP3/h9OOI2aC1WF7iCNQsjhDtzVp4dpMu83LSXk8oaxiBWUubyUrqyVwh4aQWhlN3UwRhHeHs7kisZWFhkKcleBOFpthDWHpuAWbb060y2hb5S6RZPeupHIFi4Zlc9dfgF1j5zYmneea0L0UAYQuonFCQ9pj3j7d4YoiJEXTSRYri023bGkll5UbWrDNVmZCaerwemPCYXeS3W+yWLGGKlNH4A4N2ZQjcIzJTHmWxvXQvRRBSBokuBtcaXZFNchmDGFbTECu6ZyJFhO20m4DhtSc5GdUmDjIxxEtHBPMLPwmi2XuRLdKnEeQFxqyaOzcawG0ytbNFIEMZKHlXyLjEaC5d05ei2zLNrTsuMUCWUBpt0dgShHYuKEFlE0CmE4Wu5lgmuPJoVG4FsrI5hTgRYy1Os+7W9cJDVU9go6gIUeQedQew3XHRW2aXED+uAVIFqczLRNMJD9lymLWkL+kZ/ZrmUpso8liN2sI7Jpz7oKy7POOoZag8gjUc4OKwJHNoY/aNOeqHoFHaGQN5Q4X11xQZnXMNmCymBxrSL8iSKvf00qPIDi11ZgHlSdbRkmBXXPOfcQneJBN5nkERvMEhaEhm+acLPBWqsniDqCFNeSEhjT3zrE6WRyuQZmb522m+6jFbKsAoUgn5h0xevSi7SGODEsNysqWTudYQ85zs7JFPMtWUbhrkUDrQHQvRaCh9a7RZLG1G1r4FhOO4tTOGkqncputh3hyZRFMSamNrRKH11ua9HSPG5SVLXfwkXpuljlUGLayaNx8e1Le0b0UgRbWUK6yWDUF0yibY2lYlywOp6TSUimBqDHWUNTSAp9Cq9ubbGYrsR3ZyClQsNOy9SibJN8jMMocchMnPMhWUVSTxR6hgTXkbGSqQMpQiwmbJhcUhDiCVBbL3Bm8xlhDlrrqAaxHRxGYadKXFa5ANssUqI9xcxtnYJg15F4LYGkdQTVZXAbhi2icORaNmEgWWxoaCtmjSRmfwlyLCffkt2phOoaHPyWVlpn5FTFZR5BWcnUFj6DcnJHqvxKtRLLYagVarSz2Bg1FNM4kc1gKZpLFFi1KCM8actUR6A8NpQomv0Vjl8fVx7NsqbTM6A+DvXPSLtqtD9kqgsJYd7lkscuDAtMegcRqDzQvWVz1CEoj4GHibjiTzInhJrXXEVhaUOZwpwMfTGOov36WPmphzNbdGRU8/65SyqzHaWxTkymyrTnA8nErpwjIhh6d5+ZEc0JDNrahLgwNVT2CDuAqogl5Qpn2M1K7RBOwaIjKYoEQJnoNFTJMLFKiAZN3KXey2OTBNJGob2+lIpCudQo+ksXq+dbNGqomi8sjRIGPg7wcgYnQkBB2bWaQr6QCUDTdvXOM9Rqy0bItShZ7ZA25ePFS5mpXtCKdsnjc/NNHEVQ4NGTzuFXpo50jncolyILmCLKsId0tJmxPFgdLkGUL8EzRIZ06Aitj3cE2DXdvJjCUMLaadlvIzCkzbq6CRTBNHw2W96kICsetGhrqAE5cVENlsVNHoO/w+i6SLAafLZXVY44OaaiOwEoLLViBT9rJEZhkwdjMGsoaHt5yK0WKsxKhIRtzUtVksUekU7m+NAGrUFPuHMHW4hGEqEJNS0MelFs2Q9zp8AjmEaTShSwYA6JZzxrynvdRdSoVYg2lHXKCzayhah1B53B7BBDIdXIWZfZMWV1zrsgdtslVDx4XdYbHodsaqyOw0bL1Get2fy2SqSMAUx6Bxawh94l4UD5Z7GKlgemmcyl7DY+itVANDZWGBm2eYw1pTn4apH6FRghLI+3OEZigQxYtTMvGDf8x21Qm1GG0ZYLtrCFfyWKyBYtgOEeQjSrYHBqyzCMQQvxJCPGpEOJjIcSjQoj+rvcuFULME0LMEUIcFV5UDyhKkAVXBE4MV9+kcya/CCybMfhN3rm/mhmeXB2BAdkitlq2BbFuH8niqCv5aSTUYTVryO98y88RmE0RFHpSFtYRRLzlVvwgrEfwAjBRSjkJ+Ay4FEAIsQtwBrArcDRwkxDO7mwQMhV4Q3OQchWUaW2ZYDMtLURZvTtZLEwcvWiQMhcaRQwT7/RRISqQLLaVNVTUfbRcjqCgjqASHoGN42ZrslhK+byU0lGZ7wIjMn+fCNwnpWyTUi4E5gH7hLmXJxT9iME6aYITw9VdR2ApLS2dUq5wACsoGxrC0Ilb6fDK3RyCtSNQrCHDvHgZPkxqDIUbmsc21JU5mMZhqdk4bsFyUl6gM0fwDeCZzN/bAUtd7y3LvFYEIcQFQohpQohpa9euDSeBhgSZdOcITJxHYOOG5q6/cJ57RC5ZbOpgmvDhPmMIGLN1WENGPYJs/YWN41ZYWdy51S1lLgelPm7aI4hg71GVZoyiWLkPCCFeBIaWeOsyKeXjmc9cBiSBe5yvlfh8yV9PSnkLcAvA5MmTw/3CGtw6ZyOLCt2H19ucLM54BCHpo0ZO3LJZgRYmi310H41EchubmWSxzawhv72GZF6vIbMFZQXMQxtzBAaUe1lFIKU8vLP3hRDnAscDh8lcrfwyYKTrYyOAFUGF9AwNbp0zx7KVstrbUOtP9IRGOhl40yg649l4HYFF4xbQVXcKpCLZZLEJ2WxmDfknAOSxrEyGhty1SB5lqxj8tu/2gbCsoaOBnwMnSCmbXW89AZwhhKgVQowFxgFTwtzLE7TkCPIri42cUObIagvShR6B9/90rlurqYKylL3jFrA2JMcaUs/NhYYs9aSKWpp0LlthKM3smcXha5GMwd2vDCobGiqDG4Fa4AWhhHtXSvkdKeVMIcQDwCxUyOgiKStgkhT2rg9bRxAxWUdg0cIMYQU5m1gsYujELastW0eB+vPy1HkEhnnxtm9oPuovUmmnJUfm+dbuEWyJ0FBnkFLu2Ml7VwFXhbm+b2jwCLL00Yih0JCVEyx4O4JsTiUSISIwkCOwmHabnW/+xk1K8noNaR8z5ybWsoYKcgRlZEulJbXxSI5lVRHWkMU5gmob6jLQMFDOHNOfLDZH/QqNIvqod9mcg3ti2gvwMrCadpsMNG4q1IHZZLHVrCF/eZ9kWmYMjQqyhrrEuFUVQWlocIfdBWVGPQKbXPV0MrAnlUrlPCgjrCGbY92OIvBLH5UyO16wNbKGnNyKd48garptd1Y2m8dNGttDuo8iyHaL09RrKIJeFkzROa0WKQIn1h3geD53jsAca8jSWHdAj0A6J5SZDHXYnFvxqUBThR6B0RxBsmAtWDRuRZXFVUVQDGcyaeo15HQf1Z8strBVQrrQCvI+wVKZz0azHkGuKE8LbGdbBZhvysI1fNCK1Z6Uv1BkKi2zoUf13LRslirQgOdfeEH3UQTOZAp5GEfeUZW6zywOUHxUEWTjov4nWF6OIGuxaZTN5rbATkjNN32U/DoCk22obfakPOcI0kSjFWINWd1iopoSADEFAAAgAElEQVQsLg9NHkEuR6AWqjbro4irb9MEC5EsTrm7tarXtFq4NrOtsr+pd/po2s1KEwYtXJtZQ+lEwbh58wgqmiwGJaNV6zT4AVLl0H0UQdYjCBbiyF4m74QyTdaalMWbrW0WWkAFmqOPCjMWrrOh2ahAs5atd08qW7AoRHa/2epYQ0W5FQ+soYqdWZzKjZmI2kUfLRy3arK4BAzkCLQlP1MJ9Rh1eQS2TDApM4nFcPTRqNtiM5IjsNgj8CFb9ijUiOlkscXsl3QqsxY89hrKFJRVJlmcyo2ZbeeLp5IQjRvZQ7qRInD6R4dkDWWUbDb5qUMRpDOKIBK3j43g9qRCNJ2LRSJmePFFlq1lnpTPcXOf32DUwu0KrCGPSiqZlsSihjzOQhR6BFbNt0xILRpXz1NVRVAMZzKFTCw6FpvIFPxoSUw5mjsaV5YQ5LyELQ3pGrcAITV3jsBIE7WsZWtjrLswWezBIyjIQcFW2Gso5eQI/NBHDedUHDjH3YKFHkFC7SFZY1LfHtJ9FEHJDS1IZbE7+akrNJRRBJGY8gpA648YCmmXbCFaTMSigqhzgpTOjc2Z/DZbtj68lbyjUI0eTGMzayiV8Y59eASRSC6nUimPIGJjjiDu8giqiqAYIUMcDhxrI1tHoMUjcEJDwYq2jKJkkt1PjiBXR6A91JFOARKiNfZZtuk0IDO/qXdvxfGWhPHQkM2sIceTiueed4Js99FKs4ZE1D7DIxrzPG5+0H0UgTtZHII15BRIaa2UzSaL3aEhSxSBM25BK4vdB/nojuGm2nOy2eYRyGCGh6M441HDyU8nNGTbuIEr1u0tTJpMp5XHWWnWkI2hIbcnVfUISkCTR9CeiXnHYxF9lbLZ8EvcwtBQOLaVmz6qPVmcVaA2egTucJ932RLO/IpGzFbKBshfVAzpDPvF41pIpw3Sk4tu5mYNxSwLqTm5FaEeqx5BCTg/WMjEYiKzKmuiEX2Vsu5Nw0B8LxRKVmT7aTHhyhFkFqqTQA4NtydlW6w7HSzv48wvpQjUa9pj3lIqbypaa59HkE7n6Moe10IynSYWEcQy8yuha36VQh5rKGJPCBdy9FFQc66aLC6BUlz9AJM/kSyxUMNqArdsBuJ7oRAyWexuMRHPDFhCF20o7VIEtsW6nXETUV90vvZUidCQ7lBHydyKbQo06ikUmU5L0pnzG2KZOZA0SRuymTXkeASg5lyVPloCqTb1GK0N5Q4nUunssYvaXFF3HYG19FF3GCFAjiASIRbV7RE4OQILWUPpUrkV7x5BTV5oSLMiyK4FG8etMKQmOp1v7u628cz8ShhNFrs2WyuTxY5HEKt6BCWRzGwasXDucHtKZi1bbTFvR3P7iItWDHmsIf/eStKVLHYstoQui83qHIFr3HyE+xLJXI7A2GHsKddasNWTcuZaNN7puLlPDBRChYeMeQRSQrIVYnUZGfXG4UNByhx9FMqOm190H0XgTP5oPJQ7nEilqXEUga6CH7c7bFuOwL3ZBpAt24Y6mrPYktqTxRa25iiZI/ARGorlPALtoSF3bgXssmzd4waZWHfH4+YOPYLKRWmbX4Vwxi1Wk5Etal9ILept3PyiGykCV2goRL/uRCpNPKa+ry2GW7LFhCUbWrJVPcZqA9JH1WNU5HIE2iy2dAmPwLpksSuk5sUjcOUItBkahcgaRe4NzTZFkBmzaMybR5BZi/FIRJ/HWXQz1x4Cah+xRYGmXHsIlB03v+g+iiAbGqoJtdkmUumsZasthuu20KxTBJnJH6vLbRzORuIB7Um1UGpjuRyBNlZHqRyBLRtadrOtzdD5vLE43DkCY8niZOGGZqFH4JH90ubMr7j6/WNRoS8HVQh3eBksU6AFXl6VNdQB3No8u6H5H6i2ZDpr2WrrBeOOi1oXGnIUQW0g2VozLKvaeCTnEehyp/NyKxFA2LOhOZ5UPBNP9hizzaePmkoWF24aFoU4spatm/3SiSJIZOZXxkuPRSP65leRbM4e4nhSFuUIUoUhNQvrCIQQPxVCSCHEwMxzIYT4qxBinhDiYyHEXjru0ync2jyEIkikZC5HkLXYQsqWF0awjD6aDQ3VBZItt1Cj2TiudtZQ3oZmiSJIuMYNPMds29305GyyWLNsRaEhizY0twcKZcfN8QjqMh5BPCLM1REkXUYR2OlJZRVozC76qBBiJHAEsMT18jHAuMy/C4B/hL1PWbg3jaxl6z3E4SDh8ghyoY6QmsA9wQyUh4dCnmyZ4yp9eQSpbLw7W0egjTVUsKHZtDCTBYrAY8zWqVyviQkX3VazhZsqCHFEawKtBSNINKvHeA/1WGbcWkt5BMZyBKVyK7Z4UoWy2Rcaug64BHCr6ROBf0uFd4H+QohhGu7VMUqGhgIoglQ6u0BrsqGOkBZIokU9xnv6iidXBIXxZJ+ytSXS1MVy8VvQyBoqpBra5BEUKgKvOQKXR6BdcToo9KSiNRYZHv7GrdAjiEWFuTqCIm/FIsMju4c4CtQi+qgQ4gRguZTyo4K3tgOWup4vy7xW6hoXCCGmCSGmrV27NrgweaGh4HH49lTOI3AeHXc+MLJWUE/1qPlHDIVCd9hnxWJrMkVtPGOt6a4jcCZ/zK2kbAlxlMoRlJfNnSNwSAntukMdhdZjNG6RR1BqQ+skNFTgEcQjFfAI3KEhW+Zb4R6ieS3Eyn1ACPEiMLTEW5cBvwSOLPW1Eq+VnO1SyluAWwAmT54cfEW4Ez1O47kAk78tmc5NOl2hocLJb+OG5i6i8TFubYk0tRmPIK67stiZ/DW91KNmylwoZHMEzm/qrdKzLWNU1MQiCKFqL7R7BEkXownsCg1lFai3cWst4RGYYw0VJost8kBLhdTam7VdvqwikFIeXup1IcRuwFjgI6GSXiOA94UQ+6A8gJGuj48AVoSWtjMUUr8CTv6mtiRD+6pN0aknaNetCGza0Io8ghpfoaE8j0A3a6i9ST1mFYE/2YzCXX8Bnr28pnZlAPSuVUuvJhrJhou0IeGMm+OBWhQacja0mLcQR6kcgbHQUMriZHGhUWRLjkBKOUNKOVhKOUZKOQa1+e8lpVwFPAGck2EP7QfUSylX6hG5A7Rvzq+ODRh+aW5P0TOzSGudGK6O0JCbOqq5T0goFE5+n6Ehd44grrs7ZCl32JYNrciy9eblNbeliEZEzuuMGSiQamtUj1kFalNoqCCkFoA1ZCw0lA1FultMWJIsLhVSq2RoKCCeBo4F5gHNwHmG7pNDWyPU9sk9Dzj5m9qS9KrJTLqYE/PWkCx2NjPITH5LLI32JkD4DnE4aCvlEehaqI5HYGVupdAj8OblNbYl6VkTRTiVstGI/hxBu6MIemdksyk05CJOgBq3ZMeyFXsEBkNDbZvVY11f9RixqA11e6FRFNVKH9WmCDJegfO3BC7SdW1PaG/MTXwIPPmb21P0rFHDoo3VkWjOaXKwKzTU2qAUqNOczOdm29iWzIY5tLOG2pvUxM+TzZINra0REBD356o3tyfpVZNbdjVRAx5BkSKwSIGWrL9o6vDjTW1qs+tVm1uTjUlDm7OjCGozisDG0FCeB2pBaMg6lPIIfGpzKSVN7Ul61eYnP8PnCJpz8Vqwiz7a1pCb+OBbtoaWBH3rVMgrHtHkQTlINOd7Uprd4VBorVfj5lOBNrWn6JmZX4CZZHFbozKEnOZpNnkEbQ2A8KykGlqTCAF9HGMjYtIjaFCPzj5idbLYIvqoVWhrCO0RtCRSSJmzPmp0eQQtG6Guv0s2iyy01vqcKwy+KxY3tybp26PAI9AZGnLi3JDJEViyoRWOm8fq3WaXBwXKwjXiEWjwjo2gZZMaN0eBlhm3hpYEvWtj2XYvMRPj5aBts5pjWbpyzB6PoLUeEDmjrdp9tAO0F3oE/id/Q0s+o0NbaKhlI/TYJvfcppL/toZQ49bQmvMIskcJ6goNNW/IHzfrFGi/3HOPsjW0FiuC9qRmC7dtM9S6FYFN47bJl1Hknl+gPChjbajbNuevBWGRR9CyUc03j11b/aL7KAJnoBwEmPzrmxSDZkAv5VJnk8VhF2qhIrBqYQYPDbUlU7Qm0vTtoRaq9oNDWjZAzwG559EaexRooSLwOG4bmtrZNjO/wBBrqHl98bjZ5BH0cCmCMuSEhpZkdn6BKlo0xhpyvJWsbBF7FEGhUVTNEXSApnXQe3DueYDJv6FJfd5ZqNpyBEUegUU5gub10Gtg7rkP+mh9s/o/5C1UnRZb4Ybms9jNKFo2BAr3rW9syxoaADVREb5yvRBN66Cn+ze1qI6g0COIdD7fNjW3069HzoOKRQ02nWtaA71ce4hNnnvLRui5be559cziEmhvVqGhXoNyrwWY/I4iGNBbLVQtOYJUQlkaBn/EwJASGlfnK1Af9NE1m5UHNaRPbfY1rQeHNBdOfos2tM2roM+Q3PNIeVc9kUrT0JpkG7dHYCLm3bSuYC1YlFspnG/RzjfbNZvbGJIp8IRMiwlT3P5CY9Iqg20d9HCthYje9hfdQxE0ZXoUuS3bANbj2szGNrC32ti05Ag2rwIk9B3uks2SHiatm9QY9XZtaD7CVqsbFBVwsGuhauN5tzdBW33BpmFJSC3ZpjyC3q7OK9Hym8a6RjW/BrkVp25FIKVaD70sDA1JCQ0roY9r3DrZbKWUrG5ozVMERusIGteUMCYtWKegxi1vD6mGhopRv0w99nX1tQsw+ZdtbKF3bYx+mVBHThGEmHibVxbLZoul0ZCRza0IfLARVtYrRTCkb25j03ZwiPOb9huVe83DZlsRNK5Wj30Kxq3MprF8oyqmGrFNjhKrvaCsaa2qFs8bN0s8qZaNSrY+rg2tE+94U3OCtmSawSYVp4NEi7K63Ztt1JJQZLJNha3y9rfMOtV0zGn3UASbFqvHbcbkXgsw+ZdtbGHENj1cVZ/qsS1MDHdT5piGfiNcslkSGtq4UD1uOzb3mg82wuL1TdTGIgzp43bdNcVwN2Wa17rHzZYWExsy45Y338orqaUbFRd8xDa54sJa3cnijZm10L9AgdqwoTnrNO837TgUuWi9KjQbPSBHIY5FDLGGnHXq/k1tMdiyRlGBMQnaIgvdQxFsWKAOVCnabP39iPPXNjLGNemEEOErP9fNVbJt49psbek1tGGBenTL5sOTWrC2iTEDemU53qDx4JD1c9XjgB1dstmiCOarx213yL3mQbZPV22mJhphZJ5HoLmgLCtbid9Uk/UYGOvmqceB43KvdTJuC9cpRTB2oEsRRCNmQkPZtTAmXzaZ3vL9htZnxm2Ae9wyCXRN66F7KILVs9SGEcu5kH5DQ83tSRatb2LnoX3yXo9HRbimc2tmQf/RuSZbYM+GtnqWCgu5E7I+QkOzVzawU8F4aTs4ZM1sxbQqZDTZoEBXfaIot0Xhvs7H7ZPl9ew8tA81sdyyi+vuPrpmtpr7226fey1aA8gtT4VcM1MZQW7ZHKu7hJKavbKBmliE0QMKFKeJjXn1TPU4aLxLtsxmu6Xn3JpZ6tGtQLMeQVURKEgJKz+Eobvlv+4zNDRt0UakhD1H9c97PRTPW0pYNhVGTM5/3RaXc8UHJcbNW2hodUMrK+pbmbRdv7zXtR0csmwqDN9TnejmwJbKYke2iGv5lBk3KSUzltUzsXC8YppzBMunw+AJuU63EOroVq1YOhWGTiow2JwNrVhJfbBkE7sM65vN1YGqI5ASUrrDQys+UN5AXpV98AOutGLpVKU8C5mHoC3E3PUVwYYF0LAcRh+Y/7rPuOjb89cTjwr2Gbtt3uuhknmblqhk8ch9C2TTe/B0IDSuhbWzYfQB+a97VFKvzVFMrYPGDcx7XQuro3mDsoJGFchmA4ujvVlZjz6V+6yVDTS0JosMDa1N5xKtSkmNPij/9RBHt2pDKgkr3oeR++S/3oHVXd+c4IOlm/h8ifkFmo/3TKdh0ZswxsJxkxKWvguj9s9/XbO30vUVwcLX1ePYL+S/7iM0JKXkpdmr2WvUNtnOow5CLdSFr6nHoh/RAo/AkW37g/Nf95jIfnH2aob2rWN8UWhIw8Ehi99Sj6MLxs0GFsfC11X/mSIl1TmL49lPVhERcNj4wXmva80RLJuq2mMXbmhO87ktadkum6Iap43aL//1DqzuVz9bQyotOXjn4vECjR1uAVbPUFTqMQV7SHaz3YLGx+qZqrCycNw0y9b1FcGsx1QM3p1UBF9x+PeXbGTumka+slfxscqhFurMx5S7OWTXwLIZw6zHVfXpsD3yX/eQyF7d0MrLn67h+EnDsgwrB1oODpn5qKooLvKkLDihbPYTUNuv2PDohMWRSKV55P3l7Lf9AAb0rs17Tysdcuaj6lyJsZ/Pf90Gy3bmY6r19I5H5L/ewbjdN2Up2/XvwR4j8z0o51xsrW0mZj6m+grtcEj+6zaEhmY+qsgmOx2T/7pm2bq2Iti0FBa8BpNOz48lg6/Q0N9enke/HnGOmzS86L3AC3XTEljwKkw8uVi2SGzLJu6a1sNnz8Kk03JNrBx4UFK3vL6AlJScvd/oovdCh4aaN8CnT8MuJ+bHuUFtGjK95cauZaPaNCYcn7OyHXTC4nj8wxUs39TCNw4cW/Seml+SdFgLt70JZj4C44/Nb5wGLkXQFu4eQdHeDDMehHFH5jfDg5LjNn3xRt5ZsJ6v7T+aaKTA0MiGhjR5BKkEfHw/7HhYfvEiaE/I+oYj29gvQO9B+e9V6aMuvP03tZHt9bXi9xzrsQxl7ukZK3l1zlouPHiHvK6QDgJ3h3z7RqUAJn+j+L0tTR999+9qkn3u68XvlRm3T5bX8+93FnH65JGMcdH6HMSjkXCsjvf+qU6x2ueCErJtYQtt2h3qPOD9vlv8Xgebxoamdv7w7KfsPqIfhxaEhYAsgyg0E2b6XUpR7f2t4ve29Lh9eI+qxN7vwuL3CsatLZniV49/wuA+tXytpKGh+Vzsjx9QOcbJ5xe/pzkh6xufPAz1S2HfEvPNpUD/O2VJ6FuZOqrSPOqXw/t3we5n5BfPOHBP/kLrLYP5axu59JEZ7D6iH984qNhag4Csofpl8P6/YbfT8msb3LJtqUXZtA7euwV2PQkG7Vz8vtvSKLDINzS1c/G97zOgVy2XHD2++LuEPDikeQO8dzPsfJxivhQi6t406orfN4nmDfDOjbD9IcVMKyi5aSRSab7/3w+ob0lw53l759VbOHBbuCXsEG9oa4S3/6oIE4V5FdiyoaH2JnjzOhixd3GcG/LWqZSSK5+cxcwVDdx6zuTsuSBuOK3OtdQSJNvhjT8rJtNORxW/vyXpo8l2eP3PMGiC8qQKkVmnT3+0hEtfDu8hd02PQEp4+qeAgC/8rPRnykz++WsbOee2KcQigr+euWceRc2NmiA5gud+qR4P/kXp9yNxlXDcEgU+z1+uEooHX1r6/Q5CHBua2vnqre+xsr6VG8/aM6+VshuhDg558QrVE/7Qy0q/H9mClu1Lv1EW95G/Lf1+wabRnkxz0T3v8+a8dfzupInsOrxfya9l25iEqSV47Q+KnXbYr0q/vyUVwRt/URb3Eb8tDpFC9jeVqQRX/W829763hO98cQcO32VI8WfReEYIKOW5YYEat1Kybclxe/fvqqjyiCvzacoOMgr0llfncPDOg4rf94muqQhmPQZznoZDLs2vBHTD+RFLaPNX5qzhKze9TVsyxV3f2CevhL0QvnMEMx5Sidgv/AS2KXZtlWx6qwI9Y84z8NG9cOD3S3sDUDLEMWNZPV/625vMX9vIv86ZzOQx25b+LiEODvnsOeXh7ffd4uS6gy0V4lj4Oky/E/b9TmlvAPJkW7GphTNueYfnZ63myhN25bTJIzu8dOiNbcm78M7fYc+zS1vcBbJVFEunwpvXw+5nlfZUILsWfvP4R9z65kLO3X80Pz+6g7mJxnOxV82A1/4IE06AcUeU/syWCg2tngmvXK084xKeSiKV5r7pqk/Y50b24eazPxf6ll0vNLR+PjzxfRi+V+mYo4MSk7+xLcnVT8/mnveWsPOQPtx67mRGbtuzgwso1MQiNLV7dL02LICnfgQj9oEDf9Tx5/I229KWtXZsWgqPfke5wV+4pOPPuSZ/WzLFza8u4O+vzGNg7xoe/Pb+7F7A4ihEoINDGlbAY9+FIRPh0MvLy1ZJV33zanjofMVKO6QDTwWyv+n/PlrCZa/NJpmS/P2svThu0rBOL+/kCAKdedG8QcnWfxQcdXXHn9sSlm3LRnjkm6r6+phrOvzYJ6uamQhMW7iGy48/lm8cOKaIieZGLKLBI2jbDA9+XVWuH3dtx5/bEqGh9ib1m9b1gy/dUPT2zBX1XPboJ/RYvoYzauDnR+5ITTxa4kL+0LUUQXszPHCuShCfdlcxq8QN1+RPptLcP20p173wGeub2rngC9vz4yN2os7DAKpksYdJ17wB7jlVUb1O/lfO6i8pW4UttPZmePBcxbY59c78dheFyEz+V2cv57evzWD+2iaOnzSMK0/YtYj6WAq+Dw5pb4YHzlHdH0+5o3PZKr2hJdvh4fPVxnHOY8WMFxeW1LczCrj22ZnsMGoifzplEtsP6vjzDmqCdrhNJeDhb6pOqN98Ib8ithAVH7c2uO9speDPfSr/JLcM5q9t5NrnP6N55kLuqIE/njSBCXuXztO5ka0jCJojSKfh8YuU0Xbuk8VsHDcqvU5TSXjoG7BuDnz1oTzZ1je28beX5/HvdxaxTc8a/nrYeHgDatDDoAutCIQQ3wMuBpLA/6SUl2RevxQ4H0gB35dSPhfqRumUmvhrZsJZD5ROELuRmfxPfbCY69+fz7w1jew9ZhtuPXfvIm5yZ/BUUJZogf+eqazucx7vOFzlQDP1q1M447b8fTj9bhiwQ4cflVIyb30744DLHnqf2oFjuOPre3NICbZLR/B1cEg6BY98C5ZNU4p90E6df96x0CrhqkupNoxFb8CXb+kwXDVjWT3Xv/gZNZ/N5x81cMnhO3DEIfuXTAyXQqDQkJTw1A9h/ktwwt9Uu4vOUMkNLZ2Gxy6ExW/CV26FUfm1IMs2NvPXl+by0PRl1MWjXLXnaJgJE4Z07pk7CM0aeuFyFbo98nfFhXeFqCR9VEp45meK1n3cXxSdFZWb++fr8/n324tpS6Y4c59RXHLUePqt/xDeQNseEkoRCCEOAU4EJkkp24QQgzOv7wKcAewKDAdeFELsJKUMpr6khGd+DnP+B8f+ueOYXgarG1qZ8sk6vgRc99xM4kPGc/PZn+OoXYd06naWQtmCsnQaHv22KgM/9c6OY6FuONx90wtTSnjmEjVux/xR8d9LIJFK87+PV3LrmwsYt3Ix19XAZUeP48jP759deF7huY5ASnj2F/DpU3D0H1TdQDlU0rJ96Tcw4wEVqtr99Ly3pJS8OW8dt7+5kFfmrKVfjzhX7zkKZsJREwaARyUAruNQ/SSLX/sDfHA3fPHnsNc55T9fyXF7+TfwyUNw2K9h0qnZlz9auolb31zI0zNWEo0IzjtwLN89eAcGrnkXZuJ5LcQjIeoI3rlJMb/2/Q7sf3H5z1cyR/DW9TDtdjjwh7D3N1m8vom73l7M/VOX0JxI8aVJw/n+YePYcXDGy9ykN88Y1iP4LnCNlLINQEq5JvP6icB9mdcXCiHmAfsA7wS6y9t/han/ggO+D/uU4Eln8NHSTdzx1kKe+nglh4u1fCkOf/nKBHaffJBvBeCgbHdIt4Wx65e9XTRaIY/grRtg6q1wwPdg328XvV3fojjId761iFUNrewwqBen7DMWPoRjdx0IPpUA+Eiuv/03mHKLWpD7fcfbxSuVI5h6G7x5LXzuPPj8T7IvN7UleeSD5dz19iLmrWlkYO8afnLETnz9wDH0WfKK2tB8/qbxmE+P4P3/wKtXwx5f7Zj5VYisIqjEuF2namcO+hGptOTF2au57Y2FTFm0gT61Mc4/aCznHTiGYf0yZzKs9/ebxoIm12c+pth8E74ER/2+NEuoEJVq1vfxg/DiFciJJ/PW6Iu4866pvPTpGqJCcNykYVx8yI6MG1JQJKjZWwmrCHYCPi+EuApoBX4qpZwKbAe86/rcssxrRRBCXABcADBqVIlwz4yH4IVfqQrdw68sejuZSvPszFXc8dYipi/eSO/aGF/bfzTfHdYOT8Eew3t6+9E7QKfdId+9WVkY+3zbm4XhoBIu54yH4MVfw65fgcN/k/fWvDWN/OedRTw4fRnN7SkO3HEAV39lN7640yAin9bDhwTeNGJeDqaZ8ZBSoLt+WdEKvaIS9NE5zyhq8k5HK+9TCJZuaObf7yzivqlL2dyaZLft+nHtabtz3KRh1MYy3l1AJpivHMHcF+HJH8AOh6pEotd5XYkNbc6z2XGrP+T3PPTWIv7zziIWrW9mu/49uPz4XTht8gj61JWoFgfP1eKxIDmCxe/AIxeohndf+VdxNX1HqMQ6XfQm8vELWbPtZM5bfBazpk1lQK8avnfIjnx1v9F5x3TmQXO4r6wiEEK8CAwt8dZlme9vA+wH7A08IITYHig1Q0v+clLKW4BbACZPnpz/mUVvKjbJ6APhpH/k8Wk3Nbdz39Sl/PvtRayob2XUtj351fG7cKoz2eatUh8MOVAd5ghmP6lCG+OPh6Ov9qdsTLucC19XDKHRB8GXb4ZIhFRaNdb79zuLeXPeOmqiEY7ffRjnHzQ2n+MecvKXParS+U1HHQAn3VyaI90RTMe6l02HB8+DYXsgT76NdxZu4o63F/Hi7NVEhOCYiUM578Cx7DWqf7GHGXDcnBxB2dDQig9VUn3ILnBqGaJEIUyHhpa/Dw+dR+vAiVxT8xMe+MNrNLen2GtUf3521HiO2nVIxyFGnwo07pc1tPYz+O8Z0H8knHkfxHuU/05WNrPrdOXcD+h/3xmsSA3iyysuYNR2tfzl1PEcN2lYeSKL5qZzZRWBlPLwjt4TQnwXeERKKd6Ru+cAACAASURBVIEpQog0MBDlAbjJ0yOAFb4kWz0L/nuWOj3r9LuzPcznrdnMHW8t4uH3l9GaSLP/9gO48sSJHDp+cH5fEk2Tv2SOYOkUlYAdMdmfheHAJC1tzWzF2BiwA5xxNxvbBPe/NZ//vLOY5ZtaGNavjp8dtTNn7D2yNAso5OSPZ1hDUsrizXLNbLgv85uecU/nDKFSMBkaWj8f7j2NdO8hPDbhWv550/vMWb2ZbXvVcNHBO/LV/UblwhmdyeZTScW9tFXeuFgx0npuC2c92DlDqKRs5kJDyXULSf37FOrTfThu6XeoX7meE3cfzrkHjCk6e6EkfCpQX3UEm1fB3Ser3+bsh/P7+XuBgXUqpeSdBet59PXp/HDRhWwmyp3b/5nbv7gfnxu9jfcQdqU9gjJ4DDgUeFUIsROKFL8OeAK4VwhxLSpZPA6Y4vmq9cvhnlOgpiec/TDpum14fc4abn9rEa9/tpaaWIST9hjOeQeOZcKwDhaFpslfFPNePx/uPR36DFMWRo03tkO+bIYs24aVcPcpEO/BnMNu59anlvDERytoSyqFefnxEzh8QifWGYSe/A7PO5WW2UWbJ1usDs5+yP+iBHMbWtM6Ev8+mUR7gtObf8yM/61gwrC+/PGUSZyw+3BPNOOgTLCsR9CRImjeoNZCqk3RHft2XpdQEgZCQ+sb23j07U844p2v0S/dyg9qr+EbR+/H6XuP7LDqvHPZPHoEXs8jaGtUyrN5PXz9qfJMPg2ydYaW9hSPfbicO99axLLVa3io7ncMijZRf8bj/HanfctfoBCalVRYRXA7cLsQ4hOgHTg34x3MFEI8AMxC0Uov8swYatmkJn5rA23n/I+H50hue/M15q9tYnCfWn5yxE6cte+o8px2TT+i0x1SSoloXq9kE0JZGL0Glr9AKZiIdbc2IO85hVTzBn7e9488fOciesSjnPK5EZyz/5iiIzg7REhPym2xOeFz2jbDvaeqnu/nPV2e+tsRInqZElJKpny2nEGPnMLw1mWck/w/Ru4ykcsPGMveY3xYZxA8R9BZsjjRCvd9FTYugq89CoNL93cqL5u+0NAny+u5/a2FPP/RYm6L/p7hkTV8cMid3P2F44o6hXqCzxBHrg11Jx5BKqkKxlbPVMbadnv5lwu0jNuyjc38593F3DdlKfUtCXYd2osXR97J0HVLEGfez6BxAZQAQDSz/2kKW4VSBFLKduDsDt67CrjK5wXh/rOR6+by0ITrufqONWxoWsbE7fpy3em7c9xuw/POe+0UmiZ/dqG2tVBz31mZIpknO+Xjl4XTBE+TNm9sbmHTracydMMsvtH+M5bUjuDy48dwyudG0K+Hj1gyaAkNgdrY6uJR16Kcpeo/hu0e6LpKNj2/aVsyxeMfrODON+fxgw2/Y+/opzy28zXccOy5bNffRwzZjZA5giJFkE7D4xfCkrfh5NvKc947Q0hPKp2WvPbZWm55fQHvLFhP7xrBvYP/w6SNn8Ipt7PPxNK0ZG+y+TOKcoZGBx6BlPC/H8O8F+D462GnEg3bvCJEHH7aog3c+sZCnp+lcpVH7TqUr+8/mn1mXYWY/oZK9pehwXcKzV6eVZXFqY2LYNE8fpK8mEff34bDxm/Dtz4/ln3Gbuuf/qkxRyBIE3n8u7D0PZWoKzxuzy80ybayvoU731zIhKmXchLvclO/H3POUedz6PjBnguaiqApNJRMSdeifDEz8TtMN3lDSNptQ2uCe99bwu1vLmTN5lZu6PtfjopOI3Hk1XzlAI8U1nKy+VSgWcVZ2Or8pStVG+LDr4DdTgknWySqKt59zrfWRIrHP1zOv95YyLw1jQztW8cvjx3Pua13U/v2C6pWYOLJ4WTzuRbKsqzevFb1rDroxzD5vJCy+VNS6bTkpU/XcPNr85m+eCP9esS54As78LX9RysD460bYPrtcNCPSreA9yWb3jMmrFIE0dZN/DH9bXpNPpOXDhzjqUS/44vpCb/URCNcEruf2OwnFdVx15NCXU/JlvkRk8EUwZxVm/nna/N54qMVfC/yICfFXmXVnj/kwhN/rUG2cOOW3djS6dyi/PxPwk98CBwaWtPQyu1vLeKedxezuS3JgTsO4L7dprH9+0/BfhcRP6CTnlV+ZfOpQEv2Gpp6qyowmvwNVWCkAz6Obq1vSfCfdxZx59uLWdfYxi7DXB75x3fDy9fCXueqDU2HXODDI+jkhLKPH1CFgLud2nnPKq/w6OW1J9M8/uFybnl9AXPXNLJd/x5c8aVdOG3vkbmjb2c+qmjwu34FDu2gS6wfaM6XWaUImmoG8q1LrmMbDz1tykKT6zR+5SPsF3uS5t3PpecB3wsvFwT2CGauqOfGl+fxzCer6FkT5c87zeSkRY/AHmcz9IQr9MgWkj7qhDriMx/WuyjB97gt3dDMTa/O4+Hpy0mm0xwzcRjf/uL2TKp/FR68WlUzH/m7LSKbg5rC0NCcZ+Hpn8G4o+CYP4WqgSmSr8ymsam5ndvfXMgdby1ic1uSL+40iAu+sD0H7DBAeeTzX4Ynf6jqGI77ix7ZfFq2HbKGFr6hWluMPghO/Ls/WnKHsnXu5bW0p7jnvcXc+sZCVjW0Mn5oH244Yw+O3W1Yflv7Je/BI9+GkfsV0eADIxJRxkd3DA31GjhSjxIAPeGXeS+yz8yreCW1Ozt98Sp66lyUPmSbsayev748lxdmraZPbYzvH7oj3xy9hr73/wHGfhG+dL3GDSNsjiDCXuIz+j//+9yi1C1bGSW1dEMzN748j4ffX0YkIjh18gi+9fnt1YlqKz5UNRYj9lE9hHQsSsjSm/16eXk5gtWzVJO7obvBKbd33rjQLzo5unVDUzu3vrGAu95eRFN7imMmDuXiQ3fMry9ZPUs1fBw03n8dQ2fwOW41pVhWGxbAA1+DbcfCGTmqeWhEooAomm+tiRR3v7uYm19bwLrGNvbbfluuOVkVZBaFsDcsgPvOhH7bwRn3+qdMd4ZojWrwpwFWKQKtCBsaWjcXHjyPzX125OI13+eptMajGzx6Kx8v28T1L87l5U/X0Lcuxo8OV+0M+rWthH+dp9g35bqwGpKtI/RLrOGfNdeR6D2MmtP/o29R5slW+jddtrGZv78yjwenLSMiBF/ddxTfPXhHhvbLLL7Nq1UdQ88BweoYOpUtWMzWUQSR1o3w329ATW/FdOmk02lg+Qp+0w1N7fzztfn8593FtCRSHLfbML536LhihlnTevjv6RDvCV99wH8dQ2eIxADhO0fQlsgogtYG1fBRSjjrftVaWidc49aaSHHve0v4x2vzWbu5jQN2GMBNX92LfcZ2QIVubYB7z1DnbH/1Ieg1QLNs+k467MaKIIRH0FqvJle0hmkH/IOmx1bpORHJo2wL1jbyl+c/438zVtK/Z5yfHbUz5+w/WlVMtzWqQrtkO3z9Pv0TP5bZHIMkoRIt7P3exURoZ/GRtzEuSK1AZ+iAdrtmcyt/fWku909dikBw5j6juPCQHfILwJJtcP/Zqk/+N54tPqg8LJxx82mhxaOCGEmO+uQSaFql6LV9h+uVDfI2jaa2JLe9uZBbXl9Ac3uSE3YfzsWH7siOg0tQjFMJ1cJ882o475nSR6+GgRCZzdbbuEUignhUKI8gnVKtI9bNVfTabbfXKxtANE4qmeDedxfzt5fmsmaz8gD+duae7Ld9Jxu704xy/TwlWxiWYYey1XbP0JBWBE2mpFPw8Ldg40I45wlSTdsBq/x1hywHx0ou+BFXN7RyQ2ZDq41F+P5h4/jW58fm+rOk0/DYdzKtuB8s37Y5jGx+XU4p4fGL6btxFt9M/JgL++yoX7YCBdrUluRfbyzgltcX0J5Mc/reI7nokB0ZXkgBlVLFtpdNUWGNMBTWDmXL/EY+x00IwRXx/zCyYboKVY2YrF82gGgNqUQb97yziL++NI91jW0cucsQfnbUzsUNzdx4/v9UK+6TboYR4U/CKolYra+QWm0sqtbjy7+Dz55RPaG2/6J2saSUJIjx9PuLuHzzJ+w9ZhuuP2MPDtjBQ/3Qq1erUxSP+aMR2QBPeR+v6L6KICgN8uXfwdzn1MlFYw4kPkc1VNXrETibhpr8m1sT/OPV+dz+1kJSacnZ+47i4kPHMahPQVjltWtUj6MjrwpPxewIWcu21d/33roePnmIJXv8lJfe3Ytv6lScDjLjlkomuO+9xVz3wlzWNbZx3G7D+NlRO6scQCm8c6M6ovPgS/WwvkpBiIyF5lOBTr2Ns6Mv8PbQszmgoN21Lkgp2ZwQfDBnBb96fyb7jt2WW875HHuNKuNNvv8feO9m2O8i2ONMI7IBvjwCUEyrndc+C4uvVWy0vb+pXaTpizfw+6c/5e9tgtqadm49ZzKHTRjsjcY+63F4/Y+wx9mwzwXaZcsiGu+e9FGtyLqcPlynTx7OtR/e+3wgxAlSnSFj2aaT7Tw0bSl/fHYO6xrbOHGP4fzkiJ0ZNaBE24rPnlN96Hc/C/a/SJ8sHcjmy7Kd+wK8eCVMPJl1e1wE775DW1LPyUl5EIK0iPLfd+fzfw3KQiu7oS18XdH2djmx8yM6dSBW5y9ZvHQKPHMJr7MXLw+9gAMMiDRjWT1XPjmTX29KUFuT4o7z9ubgUknNItmmqhqQ7Q+GI37T+WfDIuYvxLGLWMKXl1ytmlHqZFYBS9Y38/unZ/PszFUM6lNLr169OWr7/kR2GeLtAqs+gUe/CyP2huOv1SpbEfzub52g+yoC8Oc6rZ4Fj10Eo/ZX7lwGoQ8XLymXsvTveXsel2/8mL1G9ef2r09m0ogOTk7btETFQodMND+5hMhsaB49gk1L1SljQybCCTdSu1aNt9ZQGrBoXRO/eWoWf09Hickk/zpnMoeXs9AaVqij/waMgxNv0scQ6gixGu/j1rReVVz3G8GvGn7I/jrJCMC6xjb+9OwcHpi+lAG9ahi2bV8GbNsHsbOH3EjjWpVP6TtcHR+qk71UCtEa7wq0tYGrU3+mOdqHfqfelavSD4mW9hT/eG0+N782n1hE8KPDd+JbXxhLz1v7eP9NWzbB/V9VyfTTNbKXOkKsGhryBq8827ZGlRCr66tiyK7JlT1BSpMiWFXfyjVPz+JaKUi0tXD96Xtw4h7DO97Qku2qNXI6Baf9218b3aCI1XrzCJLt8NB5imp62l1Q05Pa2GZA33g1tye56ZX53PL6AlXlXVPHqXsMIlrOQksl1Li1N8PX/6efhVMKsTpv881JJDathfNfoP2u9doMjUQqzV1vL+KGF+fSkkjxzYPG8r3DxtH3v9d5C5OmU+rQ+dZNcPZLwZoD+oXX0JCU8MT3GC5Xcf2Qv/CTzs4b9ggpJc/NXM1vn5rF8k0tnLjHcC49ZkKOaebVKHKONq1fppLqfUp17teMKn3UI7y4Ts75r+vnwTlPQJ/8DSbrEYS0cFNpyd3vLuZPz82hPZXmz/E4Z+89jJo9S57Xk8OLv4bl09QxmCaYB6XgdfK/dCUsm5onm1Mpm6X3BYSUkmc/WcVvn5rFivpWvrzndlx6zHjqbu0DyebyF3jh1+r40JNvg0E7h5LFM7wuzLeuU71wjrsWhu9BPPaKFkXw/pKN/PKRGXy6ajMH7zyIy4/fhR2c6vxoXJ2tXQ6v/xkWvKrOQh46MbRMnuDVsp16K8x6jH/3+Dqz4ruFvu2CtY38+omZvDF3HeOH9uG+C/YrZgLFe6jmf+Xw3s3q2NUjfxe+BY1XVFlDHuElNDT9TpjxIBzyfzD280Vv57pDBs8RzF7ZwKWPzODDpZv4/LiB/O6kicRu7QXpMgtz1uPw7k3qBDSvx2DqQKyu/IY2+6nM6WwX5MnmnNgVxiNYVd/K/z32CS/OXs34oX24/ow9c1ztml7Q3tT5BWY+Cu/+XZ1NG7ZPjx/Eassr0IVvKELCxFNUCwl8HO/ZARpaE/zp2Tnc/d5ihvat459f+xxH7VpgkUZrFC26Myx4VbFdJp0Be34tsDy+EfXggS6fDs9eCuOO4qlNp9AjhGGWSKW55fUF3PDSXGpjEa740i6cvd/o0u3ZY3XKO+oMy6YpdtXOx/k7qTAsanpB8zotl+rmiqDjakoAVn4Mz/xclcy7zqZ1o6gFgA+0tKe4/qXPuPWNhfTvEc8PA9X0USGpjrB+Pjx+MQzfC470cZyjDsTqOrceNyxU5fzD9yxq0ZDtnRNgoabTknunLOEPz3xKIp3ml8eO5xsHjs1foPGenSuCdXPVuI3Yx98xmDpQLum5ebWqHN52h7xq8JpohPbCpnMe4HhNVzw5kzWb2zh3/zH89Kid6V1bYlmXM4o2r1KHLQ3cyXweqhA1ZX7Tlo0qn9JnKHz5ZuJ3zwmcg/p42SYueehjPl21meN2G8avT9iFwX06KSyM91Bj0xGaNyjZ+g6HkzRW0XtBbW/VolwDurki6CQ01Nqg8gI9t82cMlY6WRcv1RTMA6Yt2sCPH/iIJRuaOW3yCC49ZgLbuA/sqO0D7R0ogkSrkk1EVNjFdNKpEJ3lCJJtauILSspWF1fj1ZLwxxqav7aRSx+ewZRFGzhgB3WG8ugBJeigNb1U3L8UEi3qOMdYbUY2PYlEz4h34q2kU0oJtDaoAqPaHHc/HvPvEaxvbOOyRz/h2Zmr2GVYX2752mR2H9kB2QA6XwuppFIC7U2qxXpNBzRcU6jtC00LSr8npTI6GlaqQsCe21IXj7K+0V9IpLk9yXUvfMZtby5kUJ9abvna5ziy0GsqhVgdJDswihzZNq+C85/TX9xZDjW9Ot5DfGIrUAQlrCAp4cnvqyMAv/5UpwfMeD4RKYP2ZJobXvqMf7w6n+H9e/Dfb+3H/juUqECs7a0ObCmFZ38Bq2bAmffDNqM93VcrOptgz10GKz9UfVNKnPrUIx4lFhE0tHhv3Xv7Wwv543NzqItF+OPJkzh18oiOk+c1vaBxTen3nvk5rJmlDg3qVyb3YgJ1/WDT4tLvvXqNKsw68SYYsmveWzWljkPtBC9/uppLHppBQ0uCXxwznm8eNLbzU+egc0XwWka2k/4Bgyd4lkMb6vp1vBbeuVEVZh19TbbYrm9dnIXryoQHXZi+eAM/ul8ZZWftO4pfHDOevnUe27LE6zrOEbz9N1XQdvQfYDtDxXadoVxUwQe6tyKI9yi9oU29VcWRD78CRnfO3q7xkSyeu3ozP7z/Q2auaOC0ySO4/PhdclXBhajto1zeQnz8AEy/Aw78Aex8dNl7GkHPASr8U4hPHoap/1Jx0PHHlfyqEIK+PeI0tJZXBCvrW/jJAx/x9vz1HD5hCL//ysTO3XRQoaFECY9gxkOZPvQ/gh0NFduVQ4/+sPKj4tfnvQiv/0kVGO351aK3veYImtuTXPW/2dzz3hLGD+3Df87fp+OjWgsRjZf28ua9pBLEe5wNe5zl7Vq6UdtHeUqFWPKuSvpP+JLK92TQt0eMeg+GRiKV5m8vzeXGV+YxvH+P0sngcqjrXzq3suQ9ePEKmHAC7Pttf9fUhdrean+T4Wucurci6DVItYpwY8UH8NwvYdyRcMAPyl7COa+2qb3jUEc6LbnrnUVc88yn9KqNlU7WFaKmt6oPcGPNp/DkD1Qtg67WzUHQYxtomZ7/2rp58MQPVOz98Cs6/Xq/HnHqWzrvXvrUxyv45SMzSKQk13xlN07fe6S3qs1SntT6+WrcRu6nkv5bCnX9ixOL9ctVDcjgCXDsn0p/LR5lU3PnG9sHSzby4wc+YtH6Ji74wvb85Midsol5T+ixjYpnS5mLYzesUDUgnchWEdT2hbYGRat1QrRN6xT9t//Iog62/XrEaWhJqONjO5gzC9Y28qP7P+SjZfWcvNcIrjihE6OsM/QaCIkmFTZzQmZN6xVtuv8oOPHGyuYF3KjpDcjShpFPdG9F0HuQOlXMQfMGFUPuNRi+/E9PBUZ18Sh9amOs3Vw6Zr6yvoWfPfgxb85bx6HjB3PNybuVt2pBWY/N63PPnVqGeM9MC2KNHUX9oue2SjZn02hvVrJF43DqHWVl69sj3qHF1tCa4IrHZ/LIB8vZfWR/rj99D8Z21BqiFHoPhcbVKq4djeXyKdE4nHKb+eKnztCjv7LQUomMBZ6ps0i2qRqQmhIV48DgPrXMWF6a0ZNIpbnx5Xnc+Mo8hvat495vdhBqLIc+QxVXv2Wj+n2T7aqtdLJN1c50IFtFUNcPkNC+Wf2dTikF1bwezn8+834O/XrESUtobEsWbe5SSv47ZSm/fWoWNbEIfz9rL46bNCy4bD0zYeOmdUoROHUWTetKylZRODUeTWtDX6p7K4Jeg9VkSiVV4vXRb2eSTs/5KpQZ3LeW1Q3FccInP1rBZY8qq/b3X96NM/fxaNUC9B+tZGvbrDT74xfCus/g7EfMdJ/0g54DVTy5dZOycp/8gToI/OyHPHWf3KZnvKTinLJwAz+6/0NW1rfwg8PGcfGhO+Yf4OEF/bZTbX0bV0Hf7eCZSzL5lPv0d8b0C6ejacMKldt5/jJliJxyBwwc1+HXBvetY11jG4lUOm883FbtV/bcjitO3NV7bLtItkx9TONqNfdf+JVqwnfKHWaaF/qB87ttXAzDJsErv1eH4Bx/PQzfo+jj/XsqEsD6xvY8RbCusY1fPPwxL85ew0E7DuTPp+6eKwwLil6ZorWmteo3ffUaJduX/lpStoqi/yj1WBhZCIDurQgG7AhIWPspfHwfzH1enazks4vi0H51LN+UYw7UNyf41ROf8PiHK9hjZH+u82vVQi7Run6+6iM063HV02WHQ/xdxwSchOHqmSpOO+MBFXLxGHsfO7AXUxZuIJ2WRCKCtmSK61+cy82vzWfkNj158DsH8LnRARkWzuRfP0/leZzzaXc+Jtj1dGLQePW49lOVF5hyi8qnTPxKp18b2rcOKVX9xMhte5JOS+6ZsoSr/jeLung0vFULsM3YnGxL3oX3/gH7fresbBXBgEyn2nWfwdo58MafYa9zOjxzePvMWluwrjHbaPDFWav5xSMf09Ca5PLjd+G8A8YEP7fbDUeBr/5EUTWdZnJ7nRP+2mGR3UPmhb5U91YEo/ZTj/eeBg3LVZfCyef7vsykEf259Y0FNLQmeHPuOn79xEw2NLXz4yN24sKDdyjP2OhMtvvOUrLtfiYc8H3/1zGB4Xup9hyPXKBk2+3UDussSmHnIX1obk/x2ZrNNLenuPThGcxZvZnTJ4/k8i/tUprn7hUj91XnEjzybeUVTDhhy+ZT3BiyK8R6wFM/hoZl6rjJw68s+7VJI1R4YcrCDbQl01z+2Ce8s2A9nx+nrNohfTUcoDNskmKZPPNzxboad6T5ZnJeMXAn5Xk+/3/KY3GayXWAcZlzEz5csolJI/pzzTOf8tD0ZYwf2oe7v7kv44dqPDhn2+2VN/Xy71RoefSBcNyft1xewI3+o6HvCHjvltCXEjJExlkIsQdwM1AHJIELpZRThIqP3AAcCzQDX5dSvl/uepMnT5bTpk0LLE9JvPBr+OBu1U30i78I1Hjs42WbOOHGt4hFBMm0ZMKwvvzplElM3C5kfPCFXyuG0F7nqgRsxEfyzzRe/xO8c5Nikhx+pa/Y+7rGNg685mUiQtCSSDG4Ty3XnLwbh4732MGxHN66QVH3Jp6sisYqXS/QGd6+UVmNu35ZNS/0UAOSSksO+8urLN3YQiot6VMb45fHTeAMrwl0r5h+l9rQxh+r6JiV6FvlFVNvUx1sdz4ajr+ubC3DObdP4a1564gKQUpKLjx4B7536LhsQaNWzHhIEUx2OFQl1Ws7Ob+h0vj4QXjy/9u72xCpqjiO499frlpR5lOa1C5qZOCr2kx90YNZ9CBlvRIzSCgSJESFMsXodT6QGAQlKSiJlWglkWhKFka7ouZT2OZGiubWIkEJkWT9e3HONtfdWde8szPTnP8Hhrlz7mU49z9n73/PfThnLnq5bZ+ZXfZkFnkTwXZghZltlTQFWGBmk+LyHEIimACsNLMJPX1frySCEvn40Gm+bD3DxNFDuk5O7brYfewMm78+xdgRA5g+viFfLyABre1nWffVCYYPuJJp4+q7zkXhLtAeJ3G6qm8fZkxoYPT1ZRhUsFr9dR7V9a1oItgGrDGz9yQ9CTxmZjMkvQXsMrMNcbsWYJKZtV3s+6o5ETjnXLWSlCsR5P03bR6wTdJy4Ar4d26NG4GTme1OxbIuiUDSLGAWQENDQ87qOOec+696TASSdgDFno5aDNwPzDezTZKmAauBBwgj0XRWtOthZquAVRB6BJdYb+eccyXSYyIws27vGZS0Duh4PHcj8HZcPgXUZza9CTh9mXV0zjnXi/Je8TwN3BuXJwPH4vIW4GkFE4Ffe7o+4JxzrjLyXiN4DlgpqQ74g3iuH/iEcMdQK+H20eJPhjjnnKu4XInAzHYDXR7TtXAr0vN5vts551x5+M3wzjmXOE8EzjmXuFwPlJWapLNAS6XrUSWGAqWZmfr/z2NR4LEo8FgU3Gpmlz32RbU999+S5+m4WiJpr8ci8FgUeCwKPBYFknINyeCnhpxzLnGeCJxzLnHVlgjyD6xdOzwWBR6LAo9FgceiIFcsqupisXPOufKrth6Bc865MitrIpC0RlK7pCOZssGSPpV0LL4PiuWS9LqkVkmHJDWWs669rZtYLJP0bdzfDyQNzKxbFGPRIumhytS6dxSLRWbdC5JM0tD4Obl2EcvnxN/+G0lLM+VJtQtJt0lqknRA0l5J42N5zbYLSfWSPpN0NP7+c2N56Y6dZla2F3AP0AgcyZQtBRbG5YXAkrg8BdhKGNJ6ItBczrpWKBYPAnVxeUkmFmOBg0B/YBTwPdCn0vvQm7GI5fXANuAEMDThdnEfsAPoHz8PS7VdANuBRzJtYVettwtgBNAYl68Fvou/fcmOnWXtEZjZF8AvnYofB9bG5bXAE5nydRY0AQMljShPTXtfsViY2XYzOx8/NhGGYQKPXAAAAkJJREFU74YQi3fN7JyZ/UAYzG982Srby7ppFwArgAVcOJdFcu0CmA28ambn4jbtsTzFdmFAx+z011EY3r5m24WZtVmc893MzgJHCRN9lezYWQ3XCIZbHKI6vg+L5d3NcpaKZwhZHRKMhaSpwI9mdrDTquRiAYwB7pbULOlzSXfG8hRjMQ9YJukksBxYFMuTiIWkkcDtQDMlPHZWQyLoziXPclZrJC0GzgPrO4qKbFazsZB0NWEGvFeKrS5SVrOxiOqAQYRu/ovA+5JEmrGYTZgVsR6YT5gVERKIhaRrgE3APDP77WKbFim7aCyqIRH83NFtie8d3d4kZzmTNBN4FHjK4gk/0ovFzYRz3gclHSfs735JN5BeLCDs8+bY1d8D/E0YZyfFWMwENsfljRROhdV0LCT1JSSB9WbWsf8lO3ZWQyLYQvhxie8fZcqTmuVM0sPAS8BUM/s9s2oLMF1Sf0mjgFuAPZWoYzmY2WEzG2ZmI81sJKFhN5rZTyTYLoAPCTMAImkM0I8w2FpS7SJKblbE2PtbDRw1s9cyq0p37Czz1e8NQBvwJ+GP+1lgCLCT8IPuBAbHbQW8QbgT4jAwrpx1rVAsWgnn9g7E15uZ7RfHWLQQ75qolVexWHRaf5zCXUMptot+wDvAEWA/MDnVdgHcBewj3C3VDNxR6+0i7rMBhzLHhimlPHb6k8XOOZe4ajg15JxzroI8ETjnXOI8ETjnXOI8ETjnXOI8ETjnXOI8ETjnXOI8ETjnXOI8ETjnXOL+Aa7e+8u4Nw1sAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "for idx in range(number_of_inputs):\n", " plt.plot(trace_monitor.t/ms, trace_monitor.v[idx][:]/mV)\n", "plt.xlim(100, 200)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "output_traces = trace_monitor.v[:]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2, 1000)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "output_traces.shape" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "input_traces = np.repeat(np.array([inputs]), output_traces.shape[1], axis=0).T*amp" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2, 1000)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "input_traces.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create a fitter" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING /home/pfeiffer/.local/lib/python3.7/site-packages/tqdm-4.31.1-py3.7.egg/tqdm/autonotebook/__init__.py:14: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n", " \" (e.g. in jupyter console)\", TqdmExperimentalWarning)\n", " [py.warnings]\n" ] } ], "source": [ "import brian2modelfitting as mf" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "parameter_eqs = '''\n", "g_na : siemens (constant)\n", "g_kd : siemens (constant)\n", "ENa: volt (constant)\n", "EK: volt (constant)\n", "'''\n", "\n", "Cm = 1 * ufarad * cm ** -2 * area\n", "gl = 5e-5 * siemens * cm ** -2 * area\n", "El = -65 * mV\n", "VT = -63 * mV" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "fitter = mf.TraceFitter(dt=0.1*ms,\n", " model=hodgkin_huxley_eqs+parameter_eqs,\n", " input_var=\"I\",\n", " output_var=\"v\",\n", " input=input_traces,\n", " output=output_traces,\n", " method='exponential_euler',\n", " n_samples = 10,\n", " param_init={\"v\":v_eq, \"m\": m_eq, \"n\": n_eq, \"h\": h_eq})" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "opt = mf.NevergradOptimizer(num_workers=3)\n", "metric = mf.MSEMetric()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Round 0: Best parameters EK=-78.34272938 mV, ENa=27.27076459 mV, g_kd=13.46178134 uS, g_na=22.89360602 uS (error: 402.19317278 mV^2)\n", "Round 1: Best parameters EK=-78.34272938 mV, ENa=27.27076459 mV, g_kd=13.46178134 uS, g_na=22.89360602 uS (error: 402.19317278 mV^2)\n", "Round 2: Best parameters EK=-78.28625021 mV, ENa=24.17809884 mV, g_kd=15.53226421 uS, g_na=17.6488482 uS (error: 386.69997268 mV^2)\n", "Round 3: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 4: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 5: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 6: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 7: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 8: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 9: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 10: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 11: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 12: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 13: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 14: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 15: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 16: Best parameters EK=-80.29287141 mV, ENa=25.47313302 mV, g_kd=9.31321283 uS, g_na=31.45285497 uS (error: 193.02621214 mV^2)\n", "Round 17: Best parameters EK=-80.29287141 mV, ENa=22.41855064 mV, g_kd=9.31321283 uS, g_na=31.16288791 uS (error: 129.55934835 mV^2)\n", "Round 18: Best parameters EK=-80.29287141 mV, ENa=22.41855064 mV, g_kd=9.31321283 uS, g_na=31.16288791 uS (error: 129.55934835 mV^2)\n", "Round 19: Best parameters EK=-80.29287141 mV, ENa=22.41855064 mV, g_kd=9.31321283 uS, g_na=31.16288791 uS (error: 129.55934835 mV^2)\n", "Round 20: Best parameters EK=-80.29287141 mV, ENa=22.41855064 mV, g_kd=9.31321283 uS, g_na=31.16288791 uS (error: 129.55934835 mV^2)\n", "Round 21: Best parameters EK=-80.29287141 mV, ENa=22.41855064 mV, g_kd=9.31321283 uS, g_na=31.16288791 uS (error: 129.55934835 mV^2)\n", "Round 22: Best parameters EK=-80.29287141 mV, ENa=22.41855064 mV, g_kd=9.31321283 uS, g_na=31.16288791 uS (error: 129.55934835 mV^2)\n", "Round 23: Best parameters EK=-80.29287141 mV, ENa=22.41855064 mV, g_kd=9.31321283 uS, g_na=31.16288791 uS (error: 129.55934835 mV^2)\n", "Round 24: Best parameters EK=-80.29287141 mV, ENa=22.41855064 mV, g_kd=9.31321283 uS, g_na=31.16288791 uS (error: 129.55934835 mV^2)\n", "Round 25: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.66071616 uS, g_na=26.52755915 uS (error: 74.24025354 mV^2)\n", "Round 26: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.66071616 uS, g_na=26.52755915 uS (error: 74.24025354 mV^2)\n", "Round 27: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.66071616 uS, g_na=26.52755915 uS (error: 74.24025354 mV^2)\n", "Round 28: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.66071616 uS, g_na=26.52755915 uS (error: 74.24025354 mV^2)\n", "Round 29: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.66071616 uS, g_na=26.52755915 uS (error: 74.24025354 mV^2)\n", "Round 30: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 31: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 32: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 33: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 34: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 35: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 36: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 37: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 38: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 39: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 40: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 41: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 42: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 43: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 44: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 45: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 46: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 47: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 48: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 49: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 50: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 51: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 52: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 53: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 54: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 55: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 56: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 57: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 58: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 59: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 60: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 61: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 62: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n", "Round 63: Best parameters EK=-79.67807164 mV, ENa=26.79787859 mV, g_kd=14.34532187 uS, g_na=26.52755915 uS (error: 67.0600397 mV^2)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Round 64: Best parameters EK=-79.25331479 mV, ENa=29.1855946 mV, g_kd=14.38383269 uS, g_na=23.84749322 uS (error: 61.92135698 mV^2)\n", "Round 65: Best parameters EK=-79.25331479 mV, ENa=29.1855946 mV, g_kd=14.38383269 uS, g_na=23.84749322 uS (error: 61.92135698 mV^2)\n", "Round 66: Best parameters EK=-79.25331479 mV, ENa=29.1855946 mV, g_kd=14.38383269 uS, g_na=23.84749322 uS (error: 61.92135698 mV^2)\n", "Round 67: Best parameters EK=-79.25331479 mV, ENa=29.1855946 mV, g_kd=14.38383269 uS, g_na=23.84749322 uS (error: 61.92135698 mV^2)\n", "Round 68: Best parameters EK=-79.25331479 mV, ENa=29.1855946 mV, g_kd=14.38383269 uS, g_na=23.84749322 uS (error: 61.92135698 mV^2)\n", "Round 69: Best parameters EK=-79.25331479 mV, ENa=29.1855946 mV, g_kd=14.38383269 uS, g_na=23.84749322 uS (error: 61.92135698 mV^2)\n", "Round 70: Best parameters EK=-79.25331479 mV, ENa=29.1855946 mV, g_kd=14.38383269 uS, g_na=23.84749322 uS (error: 61.92135698 mV^2)\n", "Round 71: Best parameters EK=-79.25331479 mV, ENa=29.1855946 mV, g_kd=14.38383269 uS, g_na=23.84749322 uS (error: 61.92135698 mV^2)\n", "Round 72: Best parameters EK=-79.25331479 mV, ENa=29.1855946 mV, g_kd=14.38383269 uS, g_na=23.84749322 uS (error: 61.92135698 mV^2)\n", "Round 73: Best parameters EK=-79.25331479 mV, ENa=29.1855946 mV, g_kd=14.38383269 uS, g_na=23.84749322 uS (error: 61.92135698 mV^2)\n", "Round 74: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 75: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 76: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 77: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 78: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 79: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 80: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 81: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 82: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 83: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 84: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 85: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 86: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 87: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 88: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 89: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 90: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 91: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 92: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 93: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 94: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 95: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 96: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 97: Best parameters EK=-79.25331479 mV, ENa=34.57521441 mV, g_kd=13.21758273 uS, g_na=22.66965902 uS (error: 54.24210634 mV^2)\n", "Round 98: Best parameters EK=-79.56861212 mV, ENa=22.93187477 mV, g_kd=11.44286746 uS, g_na=27.10457024 uS (error: 24.1015132 mV^2)\n", "Round 99: Best parameters EK=-79.56861212 mV, ENa=22.93187477 mV, g_kd=11.44286746 uS, g_na=27.10457024 uS (error: 24.1015132 mV^2)\n" ] } ], "source": [ "res, error = fitter.fit(n_rounds = 100, optimizer=opt, metric=metric, g_na=[0.33*hodgkin_huxley_params[\"g_na\"], 3*hodgkin_huxley_params[\"g_na\"]], g_kd = [0.33*hodgkin_huxley_params[\"g_kd\"], 3*hodgkin_huxley_params[\"g_kd\"]], ENa = [0.33*hodgkin_huxley_params[\"ENa\"], 3*hodgkin_huxley_params[\"ENa\"]], EK = [ 3*hodgkin_huxley_params[\"EK\"], 0.33*hodgkin_huxley_params[\"EK\"]])" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'EK': -79.56861212 * mvolt,\n", " 'ENa': 22.93187477 * mvolt,\n", " 'g_na': 27.10457024 * usiemens,\n", " 'g_kd': 11.44286746 * usiemens}" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "res" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$20.000000000000004\\,\\mathrm{\\mu}\\,\\mathrm{S}$" ], "text/plain": [ "20. * usiemens" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hodgkin_huxley_params[\"g_na\"]" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$6.0\\,\\mathrm{\\mu}\\,\\mathrm{S}$" ], "text/plain": [ "6. * usiemens" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hodgkin_huxley_params[\"g_kd\"]" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "traces = fitter.generate_traces()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd4FNX6xz9nZje7CSQhkFBDlS6d0KRYkKY0ARVsWK5cver1Xtu1YC8Xr70rXlR+dkSlKMrFggWR3nuHUENCQtomuzvn98fsJgFDkWRnJsn5PA/uzuzZ7Nd5ZuY755z3fY+QUqJQKBQKRRjNbgEKhUKhcBbKGBQKhUJxDMoYFAqFQnEMyhgUCoVCcQzKGBQKhUJxDMoYFAqFQnEMyhgUCoVCcQzKGBQKhUJxDMoYFAqFQnEMLrsFnAmJiYmySZMmdstQKBSKCkNiYiJz586dK6UcfKq2FdIYmjRpwtKlS+2WoVAoFBUKIUTi6bRTQ0kKhUKhOAZlDAqFQqE4BmUMCoVCoTiGCjnHoFAoFGeC3+8nNTUVn89nt5SI4vV6SU5Oxu12n9H3lTEoFIoqQ2pqKrGxsTRp0gQhhN1yIoKUkvT0dFJTU2natOkZ/Q01lKRQKKoMPp+PWrVqVVpTABBCUKtWrTL1ipQxKBSKKkVlNoUwZf1/VMZgJTsXwKENdqtQOB3DgBUfQNBvtxJFFUUZg5W8dxG83tNuFc7Cnw8bv7ZbhbNY9wXMvAV+ec5uJc7i4DrzXwXn5Zdfpk2bNiQkJDBp0iQAZsyYwfr1621WVoyafFbYy4ybYd2XcOsySGxutxpn4IkzXwuy7dXhNN44x3x9JMteHWXk9ddf55tvvjlmYnjGjBkMHTqUtm3b2qisGNVjUNjLzgXmqzTs1eEkklPM17gG9upwGlrFf4696aab2L59O8OHD+eFF17g1ltv5bfffmPWrFncfffddOrUiW3bttktU/UYLGXQU5CVarcKZ3HxczDtaggW2K3EOXjjzVdfpr06nEbzAXC0/K6fR2evY/2+o+X29wDa1o/j4WFnn/DzN998k2+//ZYff/yRr776CoBzzjmH4cOHM3ToUMaMGVOues4UZQxW0rAHtBpitwpn4fKar4FCe3U4iR0/m69x9e3V4SSCftj5C0hpt5IqgTIGK/nocmg7AoY+b7cS55CxDXrdCvU62K3EOQRDJlmnvb06nERBNhTmlOufPNmTfVVHzTFYSd5hWDrFbhXOYtuPsPNX0M8sdb9SYgTN14zt9upwEuGewpBn7NURIWJjY8nOdk6wgTIGOzDURGsR2ftg/0pI22S3EucgQ8bw6wv26nAS4eCESpqcNnbsWJ555hk6d+6sJp+rLIYfNI/dKpxB7mHzNW0jJLWyV4tTCPcYUOPpxYSOxZy7oPuN9kopIzt37gTg2muv5dprrwWgd+/ejspjUD0GOzACditwDuEhJDX5XEyNhuZrVHV7dTgJFc5sKeViDEKIwUKITUKIrUKIe0v53COE+DT0+SIhRJPjPm8khMgRQtxVHnocS5O+5qsqdVCMO8Z8VeGqxTToCnXaQbUku5U4h+gEaBiqGqCGYiNOmY1BCKEDrwFDgLbAOCHE8el7NwBHpJTNgReAp4/7/AXgm7JqcTz97oIu11SKRJ1y45qZ5mtAGcMxaC7VsyyJywMtB5rvg6p3GWnKo8fQHdgqpdwupSwEPgFGHNdmBDA19H460F+Eyv8JIUYC24GKXwTlZEhpDpf0+Sd41BBBEXqU+ap6UcUsf9+ckO94ud1KnENhHmwKPTsqY4g45WEMDYA9JbZTQ/tKbSOlDABZQC0hRDXgX8Cj5aDD2QT98NGlsOZzlaRTkmXvQd+7oNsNditxDuGeQqNe9upwEnmHIXWJ+V6oqdFIUx5HuLT4sePvfCdq8yjwgpTylJkrQogJQoilQoilaWlpZyDTZsIhiD8+AZm77NXiJLZ+D7sXqjyGkoTPlb3L7NXhJMIPUyNeVz1uCygPY0gFGpbYTgb2naiNEMIFxAMZQA/gP0KIncA/gPuFELeW9iNSyslSyhQpZUpSUgWclCsKQQSCauy4iGAB7FoA2+fbrcQ5hCdX5z1srw4nUUnzGB555BGeffbZE35uVznu8jCGJUALIURTIUQUMBaYdVybWcD40PsxwA/SpK+UsomUsgnwIvCUlPLVctDkPEpOJKpJxWIM9XT8B6TKY/gjoWMx42bIqYAjBmdIhTWG0JzBrcBcYAMwTUq5TgjxmBBieKjZFMw5ha3AHcAfQlorPSXjsA010VpE+AlQxakXUzdUI0lFrxVTcl6ugk8+P/nkk7Rq1YoLL7yQTZvMjP+3336bbt260bFjR0aPHk1eXl6p5bhLaxcJyuXMk1LOAeYct++hEu99wKWn+BuPlIcWxxJVHXrcDIveUD2GkoQXpVGx6cU06QNthkG6/aURHENcA+gyHpZPLd+HiHcv/uO+s0ea2dWFefBhKbetTldA5yshNx2mXXPsZ9edfDXCZcuW8cknn7BixQoCgQBdunSha9eujBo1ihtvNDO6J06cyJQpU7jtttv+UI67Ro0apbYrb9QjiVW4oqDrtWZERUyi3Wqcw9VfwqM1SgyfKAgUmKHNKoS3GLfXLFu/fGqFPld++eUXLrnkEmJizMTO4cPNQZW1a9cyceJEMjMzycnJYdCgQaV+/3TblRVlDFZRmAuH1kGPCcUlDxTmUJLQVQhvSX59EbbMheu+tVuJc8jPhFUfm++NcjSGkz3hR8Wc/PNqtU7ZQygNUcoE+rXXXsuMGTPo2LEj7733HvPnzy/1u6fbrqyogGCryE2D6dfDlnkqKqkk8x6G8++DCx6wW4lzCD8RN+pprw4nkX3AXKgHwB1tr5Yy0K9fP7788kvy8/PJzs5m9uzZAGRnZ1OvXj38fj8ffvhhUfvjy3GfqF15o4zBKsJPOXPugh0/2avFSez4CfYstluFswifK5sqf5WY0yfUo7z0vQq9sl2XLl24/PLL6dSpE6NHj6ZvX7N+2uOPP06PHj0YMGAArVu3Lmp/fDnuE7Urb9RQklWUHCpRwybFSAO2/A/Wfg7tRtutxhmEewxf/QNaX2SvFqdQNOFc8fMYHnjgAR544I895JtvvvkP+44vx33zzTeX2q68UT0GqygZSVGBJ8/KnbBJpi61V4eTCB+T8hxLr+iEj8ln4+HQBnu1VAGUMVhGyR6DCs0sQt0E/0izc81X9QBRTMlrpoLnMVQElDFYRY1GMDS0VKO6CRYTW8d8VWZZzFkXQI+b1DEpSWJL6B8qEVLG4yKrwFBuWf8flTFYhTsaWl0M/e6BxBZ2q3EOV31u5nWop+NifEchL0Ml/ZXE7YU6Z5vvy3BcvF4v6enpldocpJSkp6fj9XrP+G+oyWeryMuAzd+aGZMJTexW4yy88aCrNbCL+OlpWDMNbvzRbiXOIecQLH7bfF+Gh4jk5GRSU1OpkBWa/wRer5fk5OQz/r4yBqs4ug9m/x0uehY6XWkmzyhg5q3QaRz0u9tuJc5BSrOESoMuditxDpl7YOs88yEiuuYZ/xm3203Tpk3LUVjlRA0lWUao6zrnLtj4lb1SnMTu3+Fg5V68788joTDHXMlNYRKeVxg9BRKb26ulCqCMwSpKjmmqyecSSFj3JSyabLcQ5xA+V2b/3V4djiJ8/VT8PIaKgDIGy1DhqqVSlMewxF4dTiJ8fkhDJUOGCR+HD0fDdlU5INIoY7CKYzKfVY+hiKKboDomRbS+CGJqme/VQ4SJWs/EUpQxWEVSK7h6hvleDSUVU+ss81XdAItpdh70DJU9UMfFpH5nGPOu+V6F8UYcZQxW4Y6G5G4w4DFITrFbjXO46nNIaq3MsiQ5aWYUDqjjEsbthYTG5ntllhFHhataRfZBs1Bc2xEqj+F4qteB6Bp2q3AO8/9tLkhzy2LQo+xW4wwyd8OvocoBatgx4qgeg1Vk7YG595mllPOP2K3GOXxyJTTtC8NfsVuJg5BmNnhSK9DUJQrAkZ2wYbZZGiNeLXQVadRZZxXhyedv74WVH9mrxUnsWwEZO+1W4SykhLzDsPA18PvsVuMMwsNHw16Ceh3s1VIFUMZgGSpctVSkhJUfwPeP263EQYTOlbn3gz/PXilO4ZioJHX9RBplDFahEtxKJ3zB711mrw4nccxNUJ0rQPH18+4QWPeFvVqqAOViDEKIwUKITUKIrUKIe0v53COE+DT0+SIhRJPQ/gFCiGVCiDWh1wvKQ48zUXkMpSHDx0X1ooo43GwkK2lpbqhzBQDDUGZpJWU2BiGEDrwGDAHaAuOEEG2Pa3YDcERK2Rx4AXg6tP8wMExK2R4YD1Te4jD1O9O3IBxVoW6CYTbQDIBAIGCzEufwTfZZfOLvZ26omyAAWXXPYWjBE+aGMsuIUx49hu7AVinldillIfAJMOK4NiOAqaH304H+QgghpVwhpdwX2r8O8AohKmf9ZZeHVJnEA/7rofmFdqtxDBcdvo3fgm3xB5UxhEkMHKK52GtuqIcIAAzNxREZa26oYxJxysMYGgB7SmynhvaV2kZKGQCygFrHtRkNrJBSFpSDJueRuZtb9Rn8ZHQ0szgVReyVifii69ktwzG02/Iao/Rf+FejjyFWHRcA0jZxt/tT873qRUWc8jCG0sodHl/566RthBBnYw4v/fWEPyLEBCHEUiHE0gq5yMaRXdzpns4gbQkya6/dahzD555H2SHrsfGc5+2W4hikNMjDyz5ZC3SVgwogjuxgpP4bvwXbFq/kpogY5WEMqUDJjJNkYN+J2gghXEA8kBHaTga+BK6RUm470Y9IKSdLKVOklClJSUnlINtqTB980P0BQVViuogWIpUkkUleoRpKChM0JMniMCOPfgi56XbLcQRGqJfwZOBKVVLGAsrDGJYALYQQTYUQUcBYYNZxbWZhTi4DjAF+kFJKIUQN4GvgPinlgnLQ4lxKjIsGg6orHEYguc41lxa//yGYrcoSDJrnyuisqZBbAXvHESAclVQNHwQq52izkyizMYTmDG4F5gIbgGlSynVCiMeEEMNDzaYAtYQQW4E7gPBd4FagOfCgEGJl6F/tsmpyJCXyGIJqorUILdSTij2y3mYlzuGY0Ew10QoUH5Npnsdh6Ts2q6n8lMsAppRyDjDnuH0PlXjvAy4t5XtPAE+UhwanI6UsmmgxVI+hiPAxkWpCsYjltUexZn8Oo/VfVGhmCKnyGCxFZT5bRKBRbzr43iZHegmqmP0iVrnNujdC3QCL2FW9A98Gu5kb6iYIQFbTwXTwvQ0UzzcoIocyBovwo3OUatzjn0BGi1F2y3EMT8Y9yFfBnmrIpAQJudtpp+00N9RxASBgCApwm+/VUGzEUcZgEcFDm7nX9RGrjLM4mtDebjmOQReCnbIOh2POsluKY+iz97+M1H7lmqTPoF5Hu+U4As+hVTzqeg9QQ7FWoIzBImTGTm5yfcVAfSkifYvdchzD60cmkCOjmd1qkt1SnIOU+HGRJWNA0+1W4wjcmdsZ65rPzOA5FNTvYbecSo8yBosIhibPHna/T+01b9qsxjnUDh4kVuQRCKohk2IkDcUhrsqeAhk77BbjCMJRSS8GRitjsABlDBZxTO6CmjwrQsPgFtcsxqz/u91SnIOUeESASwu+gKxUu9U4AiMU7l2bTIL5WTarqfwoY7CIQIlwO6kmFP9AYv52uyU4E3WuAMXhzJ96Hidmyas2q6n8KGOwCKkW6ikVHfPGJ9QNsIifa1/Fc/4x5oYK4wUgiKBAmlFJhlrBLeIoY7CI3MYXcpbvfbYbddXShCX41d2LLBmj8hhKsDemDQuMduaGOlcA2N94BK0KpuKTbqShwlUjjTIGi5AIgug8ELiBrS2ut1uOY3gs5j5mBHsjUDfAMPVyN9BFC0WuqZ4UAIZh9riDaEgVrhpxlDFYhDttLU+4prDDqEtG/PEL3FVdDAnbZH22R3ewW4pjOO/Au4zSf6UTn0CLAXbLcQRxBxfxnPt1qokCNUdnAcoYLMKVtYurXN9zob6cuIzVdstxBsEAnx+9kigCvFX/cbvVOAaBxEDgNwSI0pYyqXp4j+5ktP4rrweGc6ShWgEx0ihjsIjwU85Drv+j1cY3bFbjEKRBPNl48BMIHr+2U1VGUltkMpG3Yf8qu8U4gvD1MzUwkMw6PW1WU/lRxmAR4aikILqKNCnCPCY3ur7m4d3jT9G2CiElseQxTvsOMlQYLxRHIjUShxDZB21WU/lRxmAVsnjyTE0ohggdh1jySPIfv+hfVUaa5wmo0OYQ4bLbn0Q9TvJKtQxspFHGYBEGAp90E0BXMfthQmYZQC9asEcBXydN4H7/DYAqMR0moHlIl7EEcGGo6yfiKGOwiMymF9O6YCqbZbJ6Cgyj6czRzmOjbISGccwqd1WZvd7mrJTNAVVJNMyOhiPpWvAWacSr68cClDFYRLjWy6P+a1jY4k6b1TgEl4dH9Nv4PtjF3FZPggA0y1lOT209PunGUF4JFM/RGVKo1f4sQBmDRcQcWMoL7tc4JBNIq9bSbjmOIZzHsMjTS/UYQgxI/4DL9fm0LphKwdl/WBG3SlLvwE+85X4er/CrBwgLUMZgEVHZu7lEX8AF+grqp/9mtxxnkJ/JwsDlJIos/h33IOjlsgR5JUASXiE8qLoMAFTL3c0gfSkvBkazo+Fou+VUepQxWES4K3yTPotuO1QeAwDSwE0ADUPdAEsgpKQa+Tzvfh1tx3y75TiDUC9hdrAXB2t1t1lM5UcZg0WUzGNQUUnHcoX+Ax9kjIOCHLulOASJmyCj9F8R6VvtFuMIZKiWVguRSnS2Wrwo0pSLMQghBgshNgkhtgoh7i3lc48Q4tPQ54uEEE1KfHZfaP8mIcSg8tDjRMKZm2a4qpo8A4qeAt0EiJdHQVXNNJGSAOaSnioqyUSEHqyed79Bhw3P2aym8lNmYxBC6MBrwBCgLTBOCHF8lbgbgCNSyubAC8DToe+2BcYCZwODgddDf6/SYWhRHJZx+NHV5FmYkkl/oI5LiA8S/8F9/r8AYCizBKBAr8ZuI8k0TBWVFHHKo8fQHdgqpdwupSwEPgFGHNdmBDA19H460F8IIUL7P5FSFkgpdwBbQ3+v0pHWeBgpBW+SKpPUUFIYl4cPjUGsl43NbXXBA7Df3cjMd0H1GMJsbDCGfoUvkYtXPUBYQHkYQwNgT4nt1NC+UttIKQNAFlDrNL9bKQjnMUwKjOPzZqqSKADeOB4zruN3I9TBVENsAHTI/Y2+2hoOyzgM3WO3HEcQvn4MNDUUawHlYQyl1QU+PsTkRG1O57vmHxBighBiqRBiaVpa2p+UaD819v/KZPdzHJUxHPQ2tVuOM5ASl/SzQ9blG+08cKmbIMDgrE+4Wp9HSsGbZJx9rd1yHEGz/d/wgftJc0En1bOMOOVhDKlAwxLbycDxFdGK2gghXEA8kHGa3wVASjlZSpkipUxJSkoqB9nWEpWTykB9Gedqq2mTPs9uOc7g6D7Wua+mkTjEY+6/Q3SC3YocgZDmegwAAbW0JwCx+an00dfxQuBSlje+wW45lZ7yMIYlQAshRFMhRBTmZPKs49rMAsJ1lccAP0gzfnMWMDYUtdQUaAEsLgdNziM0Lnqp/hMX7nvTZjFOQYb+K1QeQwlE6LhMdj9H9S0zbVbjDGTomPxitGd3fIrNaio/ZTaG0JzBrcBcYAMwTUq5TgjxmBBieKjZFKCWEGIrcAdwb+i764BpwHrgW+AWKSvnAGK42kMQTU0+hwiH8A7VFvKzfxxkqPh0EzPzeaC+jKgjW+wW4wxC50obsZvErHU2i6n8lEsNAinlHGDOcfseKvHeB5Ra9EVK+STwZHnocDQlSkwrYzCRhlE0yeSlUI0dh5GmMQRVwbgiwtfMva6POGtbOKBRESlU5rNF+F0x7DJqU4gbDXWxAxhGiVXtQEUlhXgp4X7u9d9IEK1ogZqqTq67JhuMRqGoJHVMIo0yBovY12gY5xa+yGEZp07sEIYnjtcDw1Uew3GkuepwQNRCoqkeQ4jV9S5lSOGk0FCsOiaRRpWztIjwHMNLgdFsbX4dj9iqxhkY3hr8JzCWQVoo3kBd8ACck/cDCS6DnbIObnec3XIcQTiPQQpVOcAKVI/BIpJS5/Gh+0l8RHHQVd9uOY7ACPpJ4CiHRC0+DF6owlVDDM35nMu1HxhU+B92tplgtxxH0H7fZ3wW9QhSqB6DFShjsAhv/n566+vo61pPvyNf2C3HEciM7azw3kQz/RATA9dDfLLdkhyCBBFej8FmKQ4htuAAHcR23mYUcxreYbecSo8yBosITyJeoK1gVMZ/bVbjDGRo8lkTGpoMqvH0EAIQQuNN9wskb3rPbjnOIBSptUlvzs5qnexWU+lRxmAZoVovmo6musJAsTH0FqvZ5r2a4J4lNityCFIihCBF20T00W12q3EG0kAiOJvtNM6qnDmwTkJNPltFeMJM6EW15as6RqiHYGguMCAYDKoTEjPzWQiBgQYqXBUwF7qSCK6WX9EtdTtwvd2SKjWqx2ARPndN1huNCQo3GupiBzBCZilDS3DIoFp7AODBuCd43ntrKI9B9S4Bsjz1WClbqMlni1DGYBG7Gg7nosJ/ky9iTGNQvQYCMYn8x38ZO3Sz2qyhjAGAI1oN8t01zAWMVGgmAEvrXMoN8kEMoSoHWIEyBosIx2FP94zkxsQPbFbjDIzoJF4PjiTVZSa4qSxfk4vyvuLcwEK2GA3I9da2W44jMAyJJjB7DKrHHXGUMVhE491fMiNqIlL3cFirWRSOWJUx/D6SRRp5rnjeDAyjsHqlXKPpTzO8YDZ9/Au4zv8vVjS/1W45juCcfe/xkZiIRAVvWIEyBovw+g7RSdtOe2Mjl2V/AEG/3ZJsRz+8kV89t9NI7mNSYBz+hGZ2S3IEAgOEeWkGVSIDANX9h2ks9jPdM5I366kVECONMgaLCI+Lni03My7/IwgW2qzIfozQ0JFLE8SRg+FXxwRAkwZC03jF/TKdN79otxxnEFq86KA7mW2eNnarqfQoY7CI8NoDUgsFZKoJtKI5hSbGLlZ7J+Darla2g9BCPUKjhdhLXN5uu+U4BAMQtApupcvRH+wWU+lRxmARIhR2KEKhmaqSaLFZEjJLqYZNAHMoSQgdiVqPoYhQHsP5/p+45vALdqup9ChjsIic6HosMlqDFl57QN0Ew3kMImQMhppUBGB89CtMr3u7Wu2vBAc9TVgq2oHQVB6QBShjsIjN9S/h8sKHEMoYivBXT+Zh/3j2e8w8BpXgZpIjvQh3jJngps4TAH5LHMNE1x0qwc0ilDFYRHit+9/iL2KA5yOIrmmvIAfgj6nD1OAgsjxmGXIjqC54gGv9n9Ih52fWy8ake5vaLccRSAmaAISOhkoOjTTKGCyi3c53mR11P+hecvCCpg69UZBLK7Eb6fLynH8M+TVb2y3JEYwOzKFl7jIeNv7KD41vs1uOIxiy/zWm+O9FCl0NJVmAujtZRHRhOk3FAZr5N3Gr/13IP2K3JNvxHFrFXM+91A3s5ZXgKPJqKGMAzBuf0NA1QdBQT8cAMYEsEuURfogdxl0JL9ktp9KjjMEqjCAGgob+XVxpzAZflt2K7CdUJsSlQT3SkYU5NgtyBmFjmKS9ztCtj9gtxxGEq6sedSeyzXWW3XIqPWUyBiFETSHEPCHEltBrqWszCiHGh9psEUKMD+2LEUJ8LYTYKIRYJ4SYVBYtTkdKAwMNTVeTz2HCUUjxRhYLvbcRv3WGzYqcgUAihU5dkU58wT675TgCgYEUgmb+rQzKm63CvSNMWXsM9wLfSylbAN+Hto9BCFETeBjoAXQHHi5hIM9KKVsDnYHeQoghZdTjXKSBgUAPG4MqGIcM9RiEHs5jUBc7mD0GITSkqq5aTKjH0N63jL/lvqFKykSYshrDCGBq6P1UYGQpbQYB86SUGVLKI8A8YLCUMk9K+SOAlLIQWA5U2kV/06ObscBoh6aHM5/VTTCc+Rw2BpXHYNJD/h/zkm9BhpY8VcAubxsWuVIQoRpS6vqJLGU1hjpSyv0AodfSagQ3APaU2E4N7StCCFEDGIbZ66iUrKg7htv8fy9K5lJdYciLb8Fd/r9ytFooJFMdE8AMbdY1HSlUjyHM/BqX8Kp3QnGCqDpXIsopV1IUQnwH1C3lowdO8zdKqy9dFGohhHABHwMvSym3n0THBGACQKNGjU7zp51DuJ78tsT+nLX+I7bVaWu3JNspiK7D9OC5NI82nycMdbED8AD/xZ01gI1aC4LRfhraLcgBSGneSGRRj0EZZiQ5pTFIKS880WdCiINCiHpSyv1CiHrAoVKapQLnldhOBuaX2J4MbJFSnrSMpJRycqgtKSkpFS6Gr9/OFxngXsQP+icEDXN8XVTxNRmEL5MuYjNurS6P+a9mSGJ3uyU5gsvFd/yem8xE7xW0rx1PX7sFOYArDzxNQt52NsQMMncoY4goZR1KmgWMD70fD8wspc1cYKAQIiE06TwwtA8hxBNAPPCPMupwPF5/Jokiizr523jK9TbBjF12S7Kd6oeW8YXnERIL9vJOcAhZNVQvCinRhVldVROoPIYQHiOPGJnPshqDuSzqdfDG2y2pUlNWY5gEDBBCbAEGhLYRQqQIIf4LIKXMAB4HloT+PSalzBBCJGMOR7UFlgshVgoh/lJGPc4lFK4aV3iQK1w/YuQctFuR7YTrAGmaoLlIReSn26zIAYTXAtd0/lHwJrfvud1ePU5BmuGqfncsu6lbPNegiAinHEo6GVLKdKB/KfuXAn8psf0O8M5xbVIpff6hciINJKKoiJ6qC1RcNM+la3znuYdN226Hro/ZrMpepAyaF4XQiJW5xAWUWQIIGcRAp0HBdq4MfAe+buCNs1tWpUVlPluFlGb4YcgYgsoYwDCNQXN7QtvqmBiGQa70IDU3aJq5aI8CIQ2k0Gno28htxgeqckCEUcZgEXti2rBAdEHo4R6DKjEdnkDUwwluyhgwNDdnF7zLykbjVR5DCdZ4OrHE01PlMViEMgaL+LXWZTyvXw+6m1zpISirzijaicio2ZmbC2/HX60+AampHgPFk81CCCQ6QlWm4AKaAAAgAElEQVQSBeDrmEv4Iu6qotX+1LkSWZQxWIRhSHQN0mt15eyCdylo0NNuSbaTF12Xb4weaNFxGAikegrEKMzjRferND2ygG1RrVnu6WG3JEcQNCQuTSA0lcdgBWWafFacPpfveZQr/Kls1D4DVBgigDtnP3211USLDjwQuIEL65xPG7tF2YwR8DNS/42Feb34MG4oBX6DgXaLcgAPZ/wLoelsbTja3KGMIaKoHoNFRAXz8FJIXH4qL7tfQTuw2m5JtlNz/0+8HzWJmGAWnwXPIy3ubLsl2U7R3JPQ0DWNgHqAAMAl/SAEO2r2pXvhG1BTld6OJKrHYBEiFIftDRxliL6Qg9mqnHI4KsntctNebCc6rwbQ2F5NNhOegBeazrjMyXTJ+QnYYq8oByCkgURDuqI5ZMSDrm5dkUT1GKxCSiRacSVRFa5adAyioqL4IOopWu9432ZF9lMUxiw0oggQI3PtFeQQNIJITSfRt5s7XdMwMvfaLalSo4zBMswEt3BopioYR3GPwe0iiIZQxwQDSJPxBN3RZlkMNZYOgCaDSKFTs2APt7lmEDy6325JlRplDBaxLjqFRe7uRXHYyhiKh03criiCaCo2HQhGJ9Kt4A12Jo9Aamrh+zDfu/qxtvo5RaUw1PUTWZQxWMT/4sbwafTlCJeHQ7IGQeG2W5Lt7Kjdn2sK/0VUdAwGmkpwozhaTRcChI6ujAGAj9yXsDhhKFooXFUNxUYWZQwWIaVE1wSFNZrSveB1jjQ8YTXzKkOWpz4/Gx2Jcps9BqF6DJCbxtvuZ6mbsYjUmDbM0c+3W5Ej0IM+3CJY1GMIqsoBEUVN7VvE3fvvoMAQZInPATCkCkOMO7qFwdpiovQB3O2/ngF121HVC2/LglwG6MtZ4jvIuvjz+DWtXanr5VY13vfdzoF9HTnU/FJAlU+JNKrHYBG6DCDRiC5M57/uZ4jZ87PdkmynycH/8WbUi7h1jR9lF/ZXq+q2AEagAAChu3HpQiVChtAIgtBIr9WV1r53KaivMsIjiTIGi9Cln6Bw4TIKuVBfgTtH5TFgBAlKgUvX6KptJSF7s92KbCcQ8AMgXFH0PzSVxf7RYKh5Bg0DqbkQugsfHjNYQREx1NG1CF0GCAo3mqokWoQ0ggTQ0TXBJNdb9Nz7rt2SbCfoN3sMmu5GCy/9quZe0DHDVWN9B3jI9X+ItA12S6rUKGOwCF0GMISOFi67bajJM2EEMdAQQhBERzP8dkuyHb/U2GHUMRehCa9Sph4izLBdTSc6kMn1rm8RGTvsllSpUcZgET96LmB1TM+iBDc1PGCuVhYkFGWCrp6Mgez41pxf+AK59Ypj9tVxgf8zLmZ7fE9EqOy2VFFJEUUZg0V85LmUxfGDES432426FLiq2S3JdhbXvpS/yAcACAodTfWi8AfNBwa3buYxAKrHALxhjGR7rX4Il5n/I1XvMqIoY7AIPZBHtG6gRSdwQeHzpDYcYbck20l312Wd1hKAIC40qYzBe3A5H7ufIDZnO2mxbZgSGAK6SoaMNzKJlr6iOTojqIwhkihjsIgPs2/gssOvoWvmhKIKQ4TkoysYLH4H4CV9PN/W/avNiuxHy0+nl74et+Fjf0IKjweuxtC9dsuylUDQ4Bf3rfTZ9y5Cc2NIgVSZzxFFGYNFuAgg9ShcRgGfRD1Ovd2z7ZZkO50Pz+af0qyoukFvxS5va5sV2Y8RKATA5Y7CLYLE4CNYxYeSCgNBPCIALg+F1ZNpVvAhGS3G2C2rUlMmYxBC1BRCzBNCbAm9Jpyg3fhQmy1CiPGlfD5LCLG2LFqcjosA6C50TdBT24AnV+UxiGAhfhEFQAc20TR7mc2K7EeGjEF3e2h3YCbrvdcTzD5ksyp7KSzIN9+4vOi6ectSPe7IUtYew73A91LKFsD3oe1jEELUBB4GegDdgYdLGogQYhSQU0YdjsdNALSoElFJVfspEEALFhAIFRMcH/yCYQdes1mR/RT1GFxRResbG1U8AqfQZxqDcHlwGflMck0mJlVVDogkZTWGEcDU0PupUGpZl0HAPCllhpTyCDAPGAwghKgO3AE8UUYdzsYIoiHBFYUeiqpAReCgG8U9hqBwoamwTHx6ddYZjdE9MUWTzuFs6KqKv9BnvnF5cAuDsa75eNNVglskKasx1JFS7gcIvdYupU0DYE+J7dTQPoDHgeeAvDLqcDZS8nJgFPvjO6PrGn6pgwq3QzcKCGimMUihq6gkYFfiuVxc+G/0+Hqgm8cm3Iuoqvjw8JR/HEcTO6OFzxcVlRRRTlldVQjxHVC3lI8eOM3fEKXsk0KITkBzKeU/hRBNTkPHBGACQKNGjU7zp51BAI3nA2O4s2ZLXJpgtWxGwF3Tblm282rcHbiEwUuAIVwqjwEoDJpj525NKzKGcJmMqopPi2ZycBhdEtsR7QrdTtS5ElFO2WOQUl4opWxXyr+ZwEEhRD2A0Gtps2SpQMMS28nAPqAX0FUIsRP4FWgphJh/Eh2TpZQpUsqUpKSk0/3/cwR+v5/aHMGjBdA0wejCR1mTPM5uWbaTSm0yveapYaihJACa7v6CmVET8Wp+smOb81LgEgKeUmM6qgx+Xx6NxQGiKcAVrjWmegwRpaxDSbOAcJTReGBmKW3mAgOFEAmhSeeBwFwp5RtSyvpSyiZAH2CzlPK8MupxJP6MXSz23kKbw//DFcpjUOsxQL+cuXTxm5FIM2Mv54WEB21WZD/e3FTaix1ERXnJjW/OC4FL8UdXrAeh8saVtp6fPHeQlL4Yl0snQ1YvKqWiiAxlNYZJwAAhxBZgQGgbIUSKEOK/AFLKDMy5hCWhf4+F9lUZ8vPMoCvdUx1dE7zrfppO29+yWZX9jPN9Qq/cHwBIi2rEZldzmxXZj/Dn4cOMSHLjJ4lMgn6f3bJsJVhoRiXpUdG4NEGXgslsbfM3m1VVbsq0gpuUMh3oX8r+pcBfSmy/A7xzkr+zE2hXFi1OpiD3KAAub3V0IWih7SU7L9VmVfbjloXI0GRiy+AW4vN2AefYK8pmRCCffOElBkjKXM0S79/Yu3ca1B5ktzTb8BeYsSlRnmikbva4AyqPIaKozGcLKMg3ewyu6Grmus/ShVBRScSQT9BdHYBz8udzc/YrNiuyHz2QR4EwS2BooXBVWcWjkgrzsgGIrl4Dl6YxyTWZetum2ayqcqPWfLYAf+jEjoqORQhBQChjkMEA1fAhPbHmtuZCR00+79Xqk+UOUB+K8hiMKp7HYPjMHre3eg0KdEF/fTnZR0qLjFeUF6rHYAHpMU15yj8OV4IZgRNAGUNeThYAwhtn7lDGAMBn1a/gjYR7AHN5TwCCVbvHsCvmbB70X0t0Qh1cukYAF6iopIiijMEC0qKSmRwchje+DgDrRHMOeZrYK8pmjkovPXyvsrfJKHOH5kbHqPILGGXm+YmPNnsKWjjBrYrfBHfrDflUDMYTXR2XJsz1nlUyZERRQ0kWkJ+xl0biIAkx5oX+lPZXhtWvTx+bddlJdoHBQWrijQ0l+hUtY2nWlKqqPHXkbg6LLkA3gjFJPOUfx4gareyWZSuurN10jNpvvtcEeVKHKl4/KtKoHoMFtNr6DnOi7iMu2vRhl67hD1btqArf/k38Xf+C2piRy8sTh3O5/hxoVftZpamxi1g9NHQUncDk4DByYs+yV5TN9N77X16TTwLmtXOQmvj06jarqtwoY7AA3ZfBUWFOPAM8GHydcTtPt6JI5SSwdyV3uKeT5DZj9As8tdhoNAKt6p6SvoIC4kQeeGsAoGHQROyH/EybldlLdEE6R11mz9KtC8YWPsjPLe+zWVXlpupehRbi8R3mqF5c1qAWWSQU7rdRkf34jx4AoEaSWU+xfsF2Lgt+Df58O2XZSvoBM7dFjzPnojyBbOZ77iRxxww7ZdlObCCd/KhaAGoFRItQxmABcYUHyfbUKdo2NBd6FY9KkkcPUChd1Khphh02yVvDA9p7EApNrIpkHtgBgCexMQCaS+UxSClJCGYQiDHPE7emMdH1Pt22vWqzssqNMoZIIyW1jDQKq9Uv2hUUbjRZtY0hKns3B7TaaLo56SzCxdGqsGEeyJN8G+xGbH1ziVPd5TE/qMLhqoczMqgljiJrhMxSE3TStlEnu1Iv+Gg7yhgiTHp2HncV3kRak2FF+4LChV7Fw+08+Wkc8TQo2hahZK6gv+oaw4rCRtwSvIN6zczqMJpLrT2wPaOAGwvvwN/y4qJ9QaEjVNntiKKMIcJsSsvna6MnCS16Fu3b4W7Bek8nG1XZi88fZGT+A8xv92TxzlCPIViFb4I79h2ica0YolzmZam7XASlqNLJXGsO+JhnpNCsdeeifUFcyhgiTNWODbSAfat+pIPYT8fkAUX7vq1+CT+6Nc61UZedbNh/FL8haNWkcdE+PdRj8PsL8dglzEakYfDgrvFsqXkecB5gTrRODFzPkLrn08JOcTZSuPk7BlYvJCm2+KwwhI4mq/biRZFG9RgiTNtNr/BszFRqxBQnbbl0UaXzGDIXfcS/XW/TsZ63aN++pH70KXiRwrgm9gmzkd07NlOXdGLqFSezuTTBx8H+pNeotIWHT4qUkgGpr3GHe/ox+/eLOmS465zgW4ryQBlDBDl65BDNfWs5nNj9mP1jcj7ilYPjT/Ctyk/tzR/TM2o79WrVKN7pqU6qrG3WwamC7P79cwDqdxpYtE/XBK3EbqKy99oly1a2bFpLC7kTX5NjK/s/657ABw0ft0lV1UAZQwTZ9N1UokSQWj2vOGa/l0JqGuk2qbKXvTs20bpwLYcaDDxmf0LBPv6mzySYWfXWqZCGQdL2GezQm1KvRfFYuksXvB81idZbquaiTnt//j8AGvW+7Jj9Lk1T6zFEGGUMESLgL6Te+ils0c+iZcfex3xmaG7cBKAKLu+5+6unMdBoNvjmY/bH+VK5x/0pZO62SZl9LJk/k9bBzWS2vfKY/boQFOKqkgvfp2ek037vp2yo1o2aycfWiro+OI2r9lTNZWClRfcMZQwRYub/viPOyCS7552I48s8hOsBVbELfsuaxXQ7/CUrE4eS1ODY+j/hyWejisXs5xcGmbi8Os94bqX90FuP+UzXBAGpV8kS7Z/M/gY3AWIH/rF0TLI8SOP8jTaospfv1h/ksrcWkpYd+Yl3ZQwRYOWeTO5fKHi4yYd07j/uD58b4eqhVSgM8ajPzz/nHmaOdi6trnzmD5+Hs3wDVSiPQUrJM1/8yubDhfQa809cnuhjPndpGn5ciCp0ngDMXrWPZzYk8N9us0jueP4fPjc0F1oVywPalZrK7ml3U5ifU1SMM5IoYyhndqxbxPx3J1I7zsPES/v8sbcApEU34396PxvU2UP20Uxum/IDGzOgztVTiKv5x4gSrWi1sqrRY5BS8tO7E7ltwxVM7OmhT4vEP7TRdUGAqtVjWL5gLuunP0HXxgncNrhLqW2k0NFk1VnUaf/BQ+S+cwlXMoc3B3rxuPSI/2bVDAGJEKvmf07j+X/nCqIYMe5f1KpeekT+lvhevHOoBQOjYixWaD17d24h5/1x/MMPY8fOoEezWqW2092hzOcqsIxlQWEBi978G+dlTGdVjQu4Ydh5pbZzaYKnA5czMrklTSxVaD1SSn6eOYWUFfdTx12Tv459oijR73gMzV1lKgds2LCGqGlX0NJIZWf/N2h+tjUPlKrHUA748vP4bfLttP/xBo5otQiMn0PThg1P2L4qrMcgpWTJnPfwvncBDYKpuM69gyEdkk/YvrBma7r43iS9XuVO+9u6fgXbnu5Hv4zpLK9/BR3+/llRnajj0YRgvtGZ1LjOpX5eWThyJINfXr6ec1feyQFPU2L/+j9qJNQ8Yfs0vS47oppbqNB6gobk2y+nUv+TQSTJdFKHfkDzfmMt+/0y9RiEEDWBT4EmwE7gMinlkVLajQcmhjafkFJODe2PAl7FTPU0gAeklJ+XRZPV/LzpEImfXsQ5xhaW1ryIdjdOxhsTe9LvdMn8Hw8GJsGRpZDQ+KRtKyJ79u7lwAc30i1/Adv0s4gZ9y7tm3c86Xd0t4cM4vDjtkiltWT7/Lwxfxv1FjzFcD2VNT2eo8uQv5z0Oy5N0FrsptbRIFTC3GcpJV8u302H2RfTR6ayov5YOl73ElqU96Tfmxs3im+MUUyzSKfVrNx9hAdnriNvXwGvxLci+eo3aNKgtaUayjqUdC/wvZRykhDi3tD2v0o2CJnHw0AKIIFlQohZIQN5ADgkpWwphNCAEz8mOIx1i+bxnzXV+GnrEf4SPxyjd3tS+l1yWt/VhEY0hZVu8nnXvkO8/tsBZq/YyVeuHSxtcTudxz6I7jr1zd4byOJu1yd40qKhxQUWqLWGQCDAoplv8M56yfe5ZzGuwz8Z1v852tdpdMrvappgovsDmm0TwPDIi7WIYCDAsu8+4ZENDVh/MI/ba49l1Pm96Ny5/6m/DLh1jZxA5RtK2rJjB/tmPsrR9P0c9N7NxLFDadPhxqIFvqykrMYwgnBhF5gKzOc4YwAGAfOklBkAQoh5wGDgY+B6oDWAlNIADpdRT0SRhsHqn7/EveB5zvavJVm7nXuHjOe63oP/1ISQCN8oK0lo5s61C8n89ilqZ6/lq+BLjOnejJi+i2lW8+Q9p5J4gnnc4prF2oyeQMU3hoICH8u+nkK9NW/QW+6hIHogt193DR2Sa5z6yyUI4EIzfBFSaS3+wgKWf/029Va/Tne5l67RD/CXy65gZKeL0LTTv/n1z/2a87JmgrGiUqz4t2bjJvZ+8yx9MmfRlEJW17+EH67tS/Vo+6qGldUY6kgp9wNIKfcLIWqX0qYBsKfEdirQQAgRvkIeF0KcB2wDbpVSHiyjpnLHCAZZOe8DYpe8TMfgVg5Si0Wt7uHBEX8/5bBRqYQicKjg0SZbln5P/g9P0yFvEdkymtUNxjJ/dG+SapU+wXwyXOFFaSp4Lyq3IMDiWW/Rat2LnMMhduqNWd3tBc4fOB6h/floEr9wI4ycCCi1Dp/Px4pZr9B4w2R6yENs15uwIuVFHh1wNZrrz9+C4mU2TYI7zTwgLeqU7Z2IlJKF29L57ZsPuO3wE7QVAbbWHkj94Q/TpeHZdss7tTEIIb4D6pby0ekuWlzao4AM/XYysEBKeYcQ4g7gWeDqE+iYAEwAaNTo1N3w8sAfNJi1ch9v/LiZN44+TbRusKT9o3QcehN1PCcfBz0poZNZBgpLPThORkrJoh0ZfPvtbB45dDtHiOXXRn+j3SV30jvhjyGXp4vuNo+JEayYQwRZRzJ4f+kBpixMZWTBBhrE1GL9OU/Q5twxZ2QIYYLo6BV0Uadcn58PF+9myk9b+dT/NjmeBFb3fJz2519Wahj36SKPSRCtWMYgpeT3hb/w5ZKtTNtfhxbVG3NR8kiaDL2HVvVa2i2viFMag5TywhN9JoQ4KISoF+ot1AMOldIsleLhJjDNYD6QDuQBX4b2fwbccBIdk4HJACkpKREN6fHl57Jq9uvEb/iYh/Lvp2Hd2uwaMpXzu3Ui+TTGy09FXkx9Pgz05zJvzQoz1SoNg9U/TWfh8tVMSutFYrX6nNv6EbpdfB19Yv/c8EhpVNQeQ9qBVDbPeob2e6exO3AlXVteztB+j9CySS0oh7HhgKh4yVxZRzJYO+M5au+ayfO+x0hp3oDDPWfRtW3LMhlCEUXGUHHOlaAhWTh/Dq7fXqRXYDEerR0dRn7EmK7JeN2nNzdpJWUdSpoFjAcmhV5nltJmLvCUECIhtD0QuE9KKYUQszFN4wegP7C+jHrKRG52JmtmvsRZW9+lB0fY5GrF5Esack737uU6AZQd15xJgRsYFd/E8cYQHkaLW/ISHYPbiBUN8Q69jrE9muB1Dzz1HzhNXFHh1coqxk0wdftGdn/9Hzofnk0v/KyK7ctNg8fQrF23cv2dj7ThHEr2cn25/tXIcPjQATbO/A/tUz+ht8hlTXQ3pl/emnZt2pbvDxUZg/OT3AoDBr9+N5Oai5+lj7GWLBHL+la30H7YnXSp/ueHXK2irMYwCZgmhLgB2A1cCiCESAFuklL+RUqZIYR4HFgS+s5j4YlozInq94UQLwJpwHVl1HNGZOX5mfbTMsYsGkNPslnr6cShPi/RtvcwWkVgcsulCTQM/MEA0UQ+i/FMCAQNFvwwm8YLH6CLsYdUUY/FHR6j08U3ca2n/CfFdE8sLX1TeahRe5wctb92bxZv/LSNCRtvIEXsYnWtwdQbcg+dW0RmRb4t+lk0rubstQf2ZeYzbd4Cblx7JX2Ej1WxfYkbeC/tO/SJyO9lRdVlsehAdxuidU4XX0Ehny7eyVu/7uH8nJ/5h+cAGzreR6sht9DWewbzkhZTJmOQUqZjPukfv38p8JcS2+8A75TSbhdgW22IzMMH+HHeLB7a2JjsggB16w6nRZ/RtEs5vbC5M6Vuzga2e68ie/MH0HHYqb9gIYUFBXy9dDMvLDhMtSN7eT1aY2nKM3QadB3J7sj1b9wujULcFBrOizKRUrJ20Xfk/fwKN2ZcifTUoFvHh2nQsz0pxxUDLG9asIcWWVuB9hH9nTNh7+7t/PD9HB7b2gwpJW0bjKVN/6vp2Dolor+7OaEfr+1vxdLohFM3tpjc3FyWzXqNppumsMU/hOSGlzNo5F0ktphEkqvirE1YJUtipB9MZfOMf9Nx32cMweC3s6Zz3YW9aFv/4lN/uRwQoUXenVQXqKAgnxWz3qDh+jcRgbOIr/0At108isatb6KpHvmbtVvXeNg1lboHhwBNI/57p4OUkjULvkH76d+0968mk+o81vMqLhh8AXFeawYBhxvfM3LP98BNlvze6ZC6awu7Zj5FSvpsLsHFji4zuf6C9iQnWHP9uHVBwDAs+a3TJTsnm5VfvkjrbVPoxxG2u1tyVf9zad23l93SzogqZQxpB/aw7csn6HjgC7rjZ0V8f5KG3M8zbbpaqiNcMC7oAGPw+fJZPus1mq5/k56kscXVgmZ9r2XW+b0tTaxx6YKr9O9YnVnfst88GQs376Xa9CvoULiSw9Rgaau7aDf874ysFm+pDkNzoTukftSunVtJnfkYKRlfUwfJ6sSLaDTiQR5q1OrUXy5H2h5dwF+Dz0DGPKhp70NEVr6fdxfsoNOvN3Eey9jo6cCR816lZc+LyyX4wC6qjDEEDcnf3vmFDwo+Z3WN/tQdej8pLU5epiFSOKHHEAgafL48lbxvH+W64HS2uFuxtve/Obvf6PKJHPmTuDWNQjSkzWtULF+9mqcX5rJoRwavxNSkoNVddBj5T1Kiq9uiJyjc6DZXEt2bmc8L8zazasUiZrvnsLb2UBoPf4CuDe0Jr/RQQAORBoHIr0twIvLz81n05Ss8tLkpu30x3NRsPI063U3r7kNs01SeVBlj0DXBLaMvJK3aCroln7jAnRWE1x6wwxikYbB83kdMWZXHnIwGnF9/BD06XUybPiNtMYQwmibw47ItBHHb+uVkzb6f9nmLKXC/zCPDejOg+3S8bnuDAwzhQsMwI3DKkA9xJmRkpLPus8c5uHcHs4ybuOacPuT2WEvXpNLSmizExgRRfyDA4tn/pcmq5ziPQ0xIuIXOl/6Ls+tb25OMNFXGGADOa1VaYrYNeGvwVuBiBtew9olrzW/f4vrhEboGNnDEfS4jrp7MwLZ1bKnFUhp+XGgWlwk5uG832z+bSLeM2fiEh5Vn/ZVPRg3FW73suRnlQVArUT5Fiz5543IiLy+XpdOfo922yfQV2ayscQE/XtuHBn+ixElE0a1PEJVSsvDHWST8+ji9jS1sdzVj47mTuKrPqAo9ZHQiqpQxOAZPLP8OXEnvxMiEOB5P6rb1HPr8LrrkLSCNBJa2f5jzR9x2WsXtrCQfL4ZFk4pHfX7e+WEN1y4aRgr5rKwzihaXPU63RGfMcYT5xXMuh+I7cK8e+Qxfw5DMnz+XVj/fRj8OsSG6MzkXP0Gn9pEJOz1TROhYBP0+S25ga1KzeHT2Om7c9zItXEdY1/1p2g6+sUwZ7U5HGYMNuDVBLHkEC/OByHVBcwoCvPrDVrTfXuFWbSm/N7uFTpfeR8qZ1HeygKH66wxNrk8kgx2NoMFP38/m7sUxHM4pJKnJLVwwYBgpZzkvHBQgw12X9VENIz6MtHLXYR79ehO7dh/h/dgkcs9/hja9RjjyadjnTeLbYDfOj4qL6A0sLe0gGz++n4cP9OJoTGPyBz1DzW6tSfJU/gW2lDHYgFv4WeP9C6lr7oamE0/9hT+JETRY8vXbTFuVwee5Hbi88/Xk9bmHng2cEQZ6Ily6FtEwxC1rl+CbeSfn+1cxsMYzjL32MjokWxNieaY0lPtpfXQjFLaDCKz4l5Z2gI0f30/04TXsjXqS+y/tS5vOY/9UtVOryY5ryb3+f7KmVmsikRlQ6A/y6xev0nH9c/TmKHe1bE7fseOJtShE2QkoY7ABvcQYaXmza9MKcqffSg//WkRUD66+5WY6NXTGePmpuMmYRuLBRKBDuf7drCMZrP74AXoe/JR84WVZu4k8MfL6M6rsaTUdguuYkPk85F0DUeVXPNIIGiz88jXarHmac8hhVd1L+P7qHsTGOn8S1aWbphWIwCqIa5cvQH59FxcE17PN2wbfiE+5qG3FzEUoC86/MiohbreLgNTKtWCcLz+P5R89TMrud8gXHpa2f5iUEX+vEDe/ML3kcsgpv2xWKSVfrUqlzYwh9GUPy2sNpfkVz9I1sV65/UbEKZp8Lr9zZev27eR+fB29/SvZ7GlL3sgX6NK2Z7n9/UiT4NvNcs8EtE0vQ5fR5fI3s/L8TPp2Ay2Wv8wo1x42dHuSNkP+VinWezgTKs5doxLh0jUC6OW2UM/Cbel8/dl/ecI3mWXx/Wl65Uuk1LE3JPdMCAo3UUb5HJNDB/fxwDepzNuYxo1J4xl3QVe6dK54CwAVL+pUdmPw+YO8+sNW3vQzcF0AAA3XSURBVPlpA59FZbOy/UQ6XnJHhZtE1TUXNUUOmQW5Zf5bUkp++34mkxfu59f8xtzc626i+r1Km/ikclBacVHGYAMuTVCIq8w9hpzsTD754gue2FCHRgndWDloOl17DSgnldYTEG6iyxibLg2D32e+RetVT1I/eBn3X3QL1/cegsuCsh4RQQ+NopfxuKxb9gsZcx5nSu5fuahLc+pd9Bs1q5dhTREbCZul4S9bglva4TTWTf0H52V/RZS7G/fc+nmly0c4U5Qx2IBLF7waGMmFtfvQ+Az/xrrf51Jj7m2MNbLIOmc2fxvcleioivXkdzwB4UaX+Wf8/YP7drH3/ybQy/c7W9ytmXDF1TRoGdkid5FG6GVbBragsIDf/+8hztnzNlkijo9HJdGpuz0Z/+WF5jYNzShD5vOiedNovOBe+soMVje+hi5XTkL3VCsviRUeZQw24NI0JgeHcXbSn89j8OXnsWzqPfTc/wGHtCT2XDSVO3t0j4BK68nVYqkuz+wG+Pv/PqXlb3fSVvpY1uYuOo+5r0LNr5yIvXEduVL/Dx8mtf7T392yYRX+6RM4N7iR1TUuoNm1b9EpwSFJnmVAc5u9qDOpHJCZV8iHH73LLan3sFtvxL6RU+nQvm95S6zwVPwrpwLi1gVJZKLnZ2AuiX16bNh9CPd7A+lt7GBpraG0ufZV6sU5r/TwmfJ6zX8hgE//xHeO+vw8PHMdaat28GhMHfIvm0LXltYkDlqB9MSzOtgEok7/adYwJG/+vI12P9xKJ20P63o+R4dBNzgyJ+FM0NzRfB7sQ9e4Zn/qews37eX26RvIymtAh1Z30Ovyu3FVgZyEM0EZgw24dI1pUY+irUmBXh+d1nemLdnDgzPXcmdUd3z9/kXKBeMirNJ6onSNfP/pF4xbt2Q+38z9mll553PbBaNofN5duCpBL6EkCfIIo4JzIbMt1Dh1QMGR9DTu/2IV32wr4KrW99J+8NmcXbdJ5IVaSEx0DBP8f2NanV40OY32RjDIbx88RrPt79Mo9gUeve48zq4/NNIyKzSV6yqqIHhcGrn8f3t3Hl1FdQdw/PsjLwkkISQEEAq0LLLXhRCC1AQEkUVbaZVSURYV0GqPW0UFpD3UWopK9Vi1h6rQIlIs4FKsG4siBcuSUAhoZFGWsAWQSEIgG/n1j5lIErIACXm8eb/POe9k3p2b5P5yk/ll7p2Z6yP8LMaNT+bmkPbK3byR2ZOE9r256ZYXaBIVOAt+nIvkk8vplrMaeK/KelpczGfzp5G47Vka14vj2nEP0b3dxfUoi9oSV3iIB0JmoZkDkWoSwxcbVhG9eCw3F7ck+Wd/Z0Ri64vmOVi1KSLcmUvLza9+Qj7ryEH2vDqSpLz1pDVM4rVxvYmIsQnm6lhi8IOocB+H8OGrZow0Y9tGit4YTc9Te7ivcyf6jOpFyEV8R2pNtTh1gKSCVVU+STQ7O4utf72dq3NXkBbVm7bj59I9xruXFoa4q+YVFRVWuj64qrJqwXMkfjGN7HoNaTd0MgN61N7NcBebyDAfy8ImEP5ZInSeU2m99NRPiXl3LF00i3XdptBz2MN+fYJwILHE4Af1Q0M4KfWJKDxeaZ0N78+m09pJFEgoW/rPpl/fm+qwhf5R4HPH0fNzoMGZd2un7/2G0Nn9iT+1m/Ud7ifh1qkBdw3+uQqPiAYg73hWhYkhJ+cYm1+5i+TsD/miQTytxs6jaVNvnj2ViAwPIYcQGuRnV7hfVZm9ehctPvoD8T7IGPoWid371nErA5slBj85Vi+GVvmZZ5QXFBWzYP7fGPnVr/kytAsxY17n8taX+qGFda/A5z7cL+/YGYlhUepepryzmdFhg7l5cDI9ewfHGHF4jHOXdv63Byn/6MP0A9lMnvsJf8ldR2rb8cSPmo6EeP9POjLMx34iiCk4MzFk5xzjyUVrWbC1kKGdJpN0Y2eax/l5/YgA5P3foovUkvBBZMQUMqZU2b6sXH71j42kZTQjtuMjDBw5gdCwwLwJ6XxIRJyzkXsEYp07PPLyTpL66n18tL813dsMYvyIJ2ja0JtzLBWJbhTDCQ2n8FjZfyJWfLiIe1fVJ6pBFPtu+5SEjt4dOiovMtzHUY3m0rwjZcq3p29EFo5hRJGPDkP+ybg+7T05x1IXLDH4yY5Gvfla5LvEsOnjhUStnEqOTuGl265hyGU/8Wv7/KFek0vZs6Mpcce/JRLYu3Mrx+eN5uqiL5G2d5B4Z2Lg3sF8nmIjw7mhYBqTO/SlBXDyxAlSZt3PNd8s5NG4e7lh3NSgSpQAYb56ZPpaEp23EYpPoVKP1Ytf5YoNv6FYQige+CLjk4LjLPtCqVFiEJHGOJedtwF2AcNVNauCemOAkudLP6mqc9zyEcBkQIH9wEhVPVL+872owyUN2ZH2GSc2ZbJl1WISD7/JzpA2zLn1clq1D6CHvNWiqFbd6FPwPG+Hd+PUOy/Q4X9/JEaK2dT7eX406HZ/N88v2jaJZDct+DyzgHZr/k3xkikkF+9kQ/PhjBo7lZDQ4EoKJfY36s6igggGHDlE+tyHSc55jx3hnYkbM4+OLS0p1JSonv+ja0XkaeCoqk4XkYlArKo+Vq5OYyAFSMBJAKlADyAHJxl0VdUj7tc6oapTq/u+CQkJmpKSct7tvhh8sCmDrm/25wf1DlGswvpLhnHFHc9Tv0Hw3paflVtAr2nL6cTXvBs6mW2+TkSPnEPzNl383TS/Gj7zv1y79wXu9r3HUaI52HcGXfv9wt/N8qsXP97OjCXbCJMi3g+bxPHvX8tlo/9ESOiFX+kukIlIqqpWuxZWTYeShgLXuNtzgBXAY+XqDAKWqupRt2FLgcHAIkCASBH5BogGdtSwPQFj0GWtmH9oLqkZK+mSOIBeP4z3d5P8LjYyjJmj4lm2MYbVMTO56rrhhIR4+6qjs/H0sMtZ8sH1LA1LoteQW+kaHRjra1xI45LbkV9UTF7hKaTHf7iyeZy/m+QpNT1j+FZVY0q9z1LV2HJ1JgD1VfVJ9/1vgJOqOkNEhgGzgVxgO9BPVau99dULZwzGGFPXzvaModqZPBFZJiJbKngNPdu2VFCmIhIK3AN0B74HpAGTqmjHXSKSIiIphw8fPstvbYwx5lxVO5SkqgMq2ycimSLSQlUPiEgL4FAF1fZyergJoBXOkNOV7tf/yv1aC4CJVbTjZeBlcM4Yqmu3McaY81PTa/8Ww3dXXI4B/lVBnY+AgSISKyKxwEC3bB/QVURKnmdwHZBew/YYY4ypoZpOPk8HFojIWGAP8HMAEUkAfqmq41T1qIj8Hljvfs4TpSaifwesFJFCYDdwew3bY4wxpoZqNPnsLzb5bIwx567WJp+NMcYEF0sMxhhjyrDEYIwxpoyAnGMQkcM4k9XnowkQFM9jKsViDg4Wc3A435iPAKjq4OoqBmRiqAkRSTmbyRcvsZiDg8UcHOoiZhtKMsYYU4YlBmOMMWUEY2J42d8N8AOLOThYzMHhgsccdHMMxhhjqhaMZwzGGGOq4LnEICKzReSQiGwpVdZYRJaKyHb3Y6xbLiLyZxHZISJpIhJwq+VUEu8zIvKlG9PbIlJ6zYxJbrxbRWSQf1pdMxXFXGrfBBFREWnivg/4PobKYxaR+9y+/NxdBbGk3JP9LCJXisgaEdnoPoY/0S33Sj+3FpFPRCTd7dMH3PK6PYapqqdeQB8gHthSquxpYKK7PRF4yt2+HvgAZ82Iq4C1/m5/LcU7EPC520+VircrsAkIB9oCXwEh/o6hNmJ2y1vjPLl3N9DEK31cRT/3A5YB4e77Zl7vZ2AJMKRU367wWD+3AOLd7YbANrc/6/QY5rkzBlVdCRwtVzwUZ+lR3I8/LVX+mjrWADHuuhIBo6J4VXWJqha5b9fgrIEBTrxvqGq+qu7EWUo1sc4aW0sq6WOA54BHcdYWLxHwfQyVxnwPMF1V8906JeuheLmfFWcZYIBGOOvGg3f6+YCqbnC3c3CWImhJHR/DPJcYKnGJqh4A5wcPNHPLWwIZpertdcu85E6c/yjAw/GKyI3APlXdVG6XZ2MGOgLJIrJWRD4VkZ5uuZdjfhB4RkQygBmcXvXRczGLSBucFS7XUsfHsGBJDJWpcNnROm/FBSIijwNFwLySogqqBXy8IhIBPA78tqLdFZQFfMwuHxCLM4TwCM7aKIK3Y74HeEhVWwMPAbPcck/FLCJRwJvAg6qaXVXVCspqHHewJIbMktOrckuQ7sUZly7RitOnpgFNRMYAPwZuU3cwEu/G2x5nLH2TiOzCiWuDiDTHuzGDE9tb7jDCOqAY5zk6Xo55DPCWu72Q00NknolZREJxksI8VS2JtU6PYcGSGCpbgnQxMNqd2b8KOFZyuhbIRGQw8Bhwo6qeKLVrMXCLiISLSFugA7DOH22sTaq6WVWbqWobVW2D88cSr6oH8Wgfu94B+gOISEcgDOdBaZ7sZ9d+oK+73R/Y7m57op/dM75ZQLqqPltqV90ew/w9C1/bL2A+cAAoxDlAjAXigOU4v0TLgcZuXQFewrlqYzOQ4O/211K8O3DGHTe6r5ml6j/uxrsV9+qOQHtVFHO5/bs4fVVSwPdxFf0cBrwObAE2AP293s9AEpCKc9XVWqCHx/o5CWcoKK3U3+/1dX0MszufjTHGlBEsQ0nGGGPOkiUGY4wxZVhiMMYYU4YlBmOMMWVYYjDGGFOGJQZjjDFlWGIwxhhThiUGY4wxZfwfgWDE2EdoJ0QAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(trace_monitor.t/ms, traces[0,:], label=\"fit\")\n", "plt.plot(trace_monitor.t/ms, output_traces[0,:], linestyle= '--', label=\"data\")\n", "plt.legend()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXeYFdX5xz9nZm7ZZZdtVOkg0iyooLGgINafij2xo7EbY9REY+819q7Yo1hjVKyIBTW2gAqoIIKAsLRdtrD1lpk5vz9mZgsuugnLfQdzv8/Dc2funb3z5c455+3vUVprssgiiyyyyCKAIU0giyyyyCKLcCErGLLIIosssmiFrGDIIossssiiFbKCIYssssgii1bICoYsssgiiyxaISsYssgiiyyyaIWsYMgiiyyyyKIVsoIhiyyyyCKLVsgKhiyyyCKLLFrBkibw36BLly66f//+0jSyyCKLLDYZdOnShalTp07VWu/7S9dukoKhf//+zJw5U5pGFllkkcUmBaVUl/Zcl3UlZZFFFllk0QpZwZBFFllkkUUrZAVDFllkkUUWrbBJxhjaQjqdprS0lEQiIU1loyEej9O7d28ikYg0lSyyyOJXjF+NYCgtLSU/P5/+/fujlJKm0+HQWlNRUUFpaSkDBgyQppNFFln8ivGrcSUlEglKSkp+lUIBQClFSUnJr9oiyiKLLMKBX41gAH61QiHAr/3/l0UWWYQDvyrB8D8F14XVc6VZZLGpwUnD8i+kWWTRHlQvg6ofRW6dFQz/CdIJcOz1fnzXXXcxbNgwioqKuPHGGwF4+eWXmTt3IyzgH98O9+8EK2Z1/Hdn0bFYOQeWzZBm4eGDm+ChPWDlbGkmHp45Gh4/QJpFOHHHlnDn1iK3zgqG9kJrKJ8H9eXrveS+++7jjTfeoKqqigsvvBDYiIKhfL732ljZ8d/9n0JreGICvHetNBMPX/8DriwIz2L84Bh4ZE9pFh4qFnqvaxbI8ggw/3VY8pE0i2ZoDa4jzcJD79EwcKzIrbOC4T9Fur7Nt08//XQWLVrEhAkTuP322znrrLP45JNPmDJlCueffz4jR47khx9+6DgevUd7r9236rjv/G+hNSz+AD68WZqJhwVve6/BIiiNvO4w8lhpFh5yirzXxipZHgGGHwRdhkiz8PDF43BVIXxytzQTD04KzJjIrX816aotcdWr3zJ3RU2HfufwnvlcMQpI1rb5+QMPPMBbb73F+++/z2uvvQbAzjvvzIQJEzjggAM4/PDDO5QP6UbvNRLv2O/9b6AUdOq63t8m44jkeK92oywP8LTPutVQ2EeaiYcxf4a+O8OQX+yjlhlYOeF4TtAsLBsqZHkEWDkbkHH5ZS2GTRWG6b0u/UyWB3iCYdAekN9DmokHyxcM6RAsOIFbYvoNsjwCFPSGrY+AWL40Ew9znoXqpdIsPCh/TmlXlkcI8Ku0GK44cETHf6nrwKo5Hf+9/y222BemXgwNIYgxuI4X88gplmbiIbCiwiAY0NIEWmPVN/DcsXDgHWL+6yYEiRzDD5LlESBQtsISY+i5jWc1aO0pXxlE1mJoL/7LB5Ofn09t7UZwsURyvdf1xDwyCicNK2fBsJBklxh+y5CC3rI8wOMSxIPCgB/eharFsGCaNBNw095rz5GyPAIofznUIREMww70Xp1Uxm+dFQzthTIgtwSM/8zIOvLII7n55pvZdtttOzb4/M4V3muqoeO+87+GrxWrkAyn7SfCCW/AVr+VZgKGAf12Fgsi/hS+gqNDYMkEHGY84tXlSCPX36qg1yhZHgGWfu69pjM/x3+VrqSNAq0h2gmieeu9ZMmSJQCccMIJnHDCCQDssssuGyddNdAiBLSJnyDwyb5zJex6rigVwLMUwmAtgGdNzXkBnKSIS+AnaPKfh0AwBBxqSr0AdLSTLJ2tj/D+hQULfatOQGiGRMXbBOA6XpAsLP7HQNsKwwIYBu2zJVbM8uoYPrlHmgnYCahd4R276y+OzBgCN0koAqwthGQ6JD3AtA6H9RLEX8ZdAp1KMn77rGBoN/zFL9mxabD/NZQBJYNh6xC4S1ouMmEQnF+/4L2GIe0wEJp7XwdmCNqlB4teGARDNBf2v9U7DoPQnPW0V8cw5SxpJs2eAKEx0yGCQSm1r1JqvlJqoVLqwjY+jymlnvM//1wp1X+dz/sqpeqUUn/pCD4bFWERDNqVd0sEiHZqziwJg2srWGTCsNgEC3BYntWoE+HEN2Gvq6WZeGhKEQ2BQlG7ynt10rI8oLV7tq4s47ffYMGglDKBe4H9gOHAUUqp4etcdhJQpbXeHLgduGmdz28H3txQLhsXLdwlYXCdDBoHa76Hf90hzcRL8+uzo3ecFQzrwB8rUy8WmeA/QacuXjA8KAKURKIGXjvHOw7DswoW4zBwabneCBSOdoTFsAOwUGu9SGudAp4F1k1MPgh4wj/+BzBe+T2klVIHA4uAbzuAy8aDXu+JDLY/wSvkalgjzcTzD//4CXQdRiu/sRQCjS8ME7ylEhEGTXTp53DbcPjmn9JMmp/PjqdDfk9ZLtD8rMJgvVg5zW1UBNyzHSEYegHLWpyX+u+1eY3W2gbWAiVKqU7AX4GrfukmSqlTlVIzlVIzy8vX38huo8Ewmytqw2AxuI4XZwhDoCxVD9+9BqN+D/HO0myaF5xu6xquAoh1hp18n3UYFpz5b0DN8uZ+UpII5lHxoHDEX5oshhA8J9OCwX7jRQEFpyMEQ1sq4ror5/quuQq4XWtd90s30VpP0lqP0lqP6tq1639BcwNhmJAbVPb+smC48sorueWWW9b7+QZ3XX3+eK+4LRRaccj86OMuhjM+9fzp0jAt6O5X4odhwQmEUxisl2DcfHIX1IcgUaDA12eH7CfLA8BOwXeve8cCCkVHCIZSoGWHsN7AivVdo5SygAKgEtgR+JtSaglwDnCxUioEKQFtwHW84rai/h1SyLXBgiFMZm8gKN/4i9jGIq1Q0Bu6h8BaAM+a+vck7zgMmUDBuHFDIBiCcbN2mddoUBrbHgtXrvVepZGqa86uEygc7Yg7zgAGK6UGKKWiwJHAlHWumQJM9I8PB97THsZorftrrfsDdwDXa61DkHzeBpw0VP/oFym1/bNdd911DBkyhD333JP58739Eh566CFGjx7NNttsw2GHHUZDQ0Ob7bjbuu7n4U+qbsM68D/5X6Klay0MgmrhO14dw2shKLZL1sKKr7xjKwSdcAOr5Wc2nMoYWnYRCIPlC14ngVQI2swE2PemZoszg9jgymette1r+VMBE3hUa/2tUupqYKbWegrwCPCkUmohnqVw5Ibe9xfx2P4/fW/EwbDDKd7Dn9xGhePIo2HbYzyz9vnjW3927Ivea2M1xAuaG275+OKLL3j22Wf56quvsG2b7bbbju23355DDz2UU045BYBLL72URx55hD/+8Y8/acddWFjY5nXrhdbQYysYfXL7fo+NiVZ1DCHQir/w8xwSa2V5QPNvc8Adza4KSQSCOwwWQ24xHPkMPHtUOBSKT+6Bty+BfrvCia/LcgmULaE2Mx3SEkNr/QbwxjrvXd7iOAH8bK251vrKjuCy8RAUuK31tJt1BMNHH33EIYccQm6u19xuwoQJAHzzzTdceumlVFdXU1dXxz777NPmt7f3utZ8QuLT79QVxl7ktZYOg7skeFah8KMHEzwkz2rsRfCbM6GwnzQTD4HVEAaFItidMQxjOODw5vleenGPLTN6+19vr6Sfk/jR3J//vFPJTz9v1cK57eCzamPyn3DCCbz88stss802PP7440yfPr3Nv23vdU0YdiC88gd49RyvhbIkTAu6bOEdh0Hza/Kjh4BLMFZe/RP03kE+9pFb3CKJQhi1q+FpX18MgyupqV1IiMYNiFTwZ1titBet/Og//Xi33XbjpZdeorGxkdraWl599VUAamtr6dmzJ+l0msmTJzddv2477vVdt15seyyUbB4Od0mixktX7TXKS88MC0Kx2LTQPp2kHI8A89+CO0eGo49UUAy5x2XQaztZLhAuhSJeCHtd4x1voumq/xuwos375bYhGbbbbjt+97vfMXLkSA477DDGjBkDwDXXXMOOO+7IXnvtxdChQ5uuX7cd9/quWy+SdWAnw6HdNFbBNy96dQyh8KP7z2fAGFkeAPmbNfcDCoOLYt4Ubz+G716TZkLTPMrvEa46hjDMKSsK/XbxjgUE1a/XldTRMCwv6Pwzm6hfcsklXHLJJT95/4wzzvjJe+u24z7jjDPavG69eP54L82v5zbt/5uNhbDVMRxwG+x3Uzj2WTatZn9+GPzowSITBq04GDfvXw99d4KSQbJ8Anfo9ieI0gC8BJk5z3rHAhZDVjC0F67taaLFg0Ky6Upg9obAXRJwefkM6DoEem0vSycse0+Dp0h8dJt3HAZNNExttwPLrmY5VC6WFwyjTgxHUSRAorq5/iWam/HbZ11J7UU64dUxgLcrlzSCSdV/V1ke0Dr+Egat+NuXvTqGJw6UZuLtyb30E+84DHtih8ldEsnxMtogJAoOniAPQ7PDYE4deKfI3twhWOE6DjoTPYwaKsTSIFv//7TX0XTnn6l1yBTCVuA2yw/eh2Hzl+C3OfQh6LqFLBdodiGZUVke4Fl2x/zDOw7DuJl2BdzUHx5vowYq45CtY/jVCIZ4PE5FRcXGFw6JapHW0lprKioqiMf96lntEpo6hqL+cMiD3nGYXBRhWGzCth/2QffCX5fASSFoogct6hhCYDEE8cMwxV+m/BEWTMv47X81MYbevXtTWlrKRuu8aieaTcwKBVbm4wzxeJzevf2tPEceAy+dBk9MgInrdiDJMEwLOm/mHYdhUgWLcSiElM/hxZM8t8nA3WX5xNa/Z3nGUfEDPCCXefMThMnN1lLBFegj9asRDJFIhAEDBmy8GyyaDi/622ie+Cb0G7nx7tUebHOktxWhHQJ3SV05fPUUDNqjWUBIIkz56GHbj2H2s/DB32Do/rD3NbJcgt/joHubdwCURNO4CYFCkd8Tjn7BKwAUUHBCYt9uAui5Dex2gXccBk20rtwzfcOw+NWXw5znYLuJ8pklQJPFMOJgWRoAXQY399kKw7iZOwUqf/D2ZRCH/5wiuT9pMSOCMFkMVrS5DcYmulHP/wZyiprdAGFYjJ8/HlbNCcdiE3CwE+Ho2nn4Y3DBYhjzZ2km3oIXZCOFYcEhhNbU1EugdKYsF/Cqr0s2h93Ol2biNev890PescAc/9W4kjY6alZA5SI4aRp0z2xDq7YRwgDrS6d5i+AWe8vSySn03AFOWr6itnYVvBe0NgjBs2rSikOgUATjpnYFlM2F3qNk6exwivcvDGiogH/59S+dumT89lmLob1YOcfLEDBMkYKTnyDQtoZNkOUBrReZMAiqr56Cq4vgvt9IM/ESFn54zxOYBb2l2bTI2AqBYIjlQ9+dveMwCE3wXLRrFkqzaJHm/LBI/CUrGNoN/0F9eq9nOYhDe4Uvu/1Fmsg6dQwhWHBmB60EQrDYBL/HQffAZsIJC0DTOI4XytIAKOwLRzzuHYdh3Lx0BtyyOTy8hzQT8TYzWcHQXgQP6psXoXy+LBdo5hMGn36PreD3U73jMCzGAcJgvYStjuHIZ+CyNXDGv6SZeAh+lzAIhrS/a2IYspKCcfPiSV72YYYRktG6CaBV24cQLDg7ng6LP4L7d5Jm4rnXgnbbYZjgTe6SDFTC/xKC3+OZI2HO87JcwKs5kY67BFg529PQIVzPKgwKRcvfo34j1Wb9DLKCod0IWduHrQ730jHDIKSql8LHd3i+0C4haPsQqsybFsdh4PP5JLh7e3gxBEHWoNr5qOdgx1NluUC4AvPFA+EPM7zjbLpqiNF/Vzj4fu84DBO8aomX8RKGQVy72qtj2PZ4+R3KoFnbGn2SLA/wUiD/+KV3HAaFYv4bULEQFkyVZtIsNMPiZgtTYaQV9VrNQDZdNdTIKfJ2KINwLMbPT4SVs7wAnjSC36O+3OsjL521ddxL3mskLssDvOBh0D4lDOOmyZoKAZfg93j1bJhwNwzeS5bPwLGeFTM0BE306sph5qPecVYwhBiVi2HxB3DmZ82SXBQh8qM37cdwunc88mhRNkTinoBqrGqx654QKhd7BVwQDk00TOmqTXUMK2HV1/KCYcdTw+HSAq8/0vTrvWMB5S8kNtwmgBVfwRt/4YPvy70+8sJwgwkegt2mdMsFLwSLn/vJvegb+8Kd8rvb6dpVMP91ajsPhm4hcLOFqDDSzenCBzl7eiehEFSga1bC8i/EFS7Xt+jm7Xaf1xctw+gQwaCU2lcpNV8ptVApdWEbn8eUUs/5n3+ulOrvv7+XUuoLpdTX/msIEojbRtDOu3bqdV42hTBWr21kmrMdswacLE0Fp6VbIgQTfOXHT6PcNK4jv/ilbI/D6WsOh747CrOBxVVey3ins/y2p435ffl91UTvJATjZsFt+6FuGwoP7SHe8LA+6T2ne9+XqZnaYMGglDKBe4H9gOHAUUqpdVWjk4AqrfXmwO3ATf77a4ADtdZbAROBJzeUz8aC42vCB5ifhUIwNKRsYqRxGqqlqWD32ZkdEvd6JyHQRCvqk95BCLgEQjNGWnyxARi36mz6J57m+yPek6ZCynZxCE8dw/Kq+uYT4bGTdrzf4x7zFvjXHRm/f0dYDDsAC7XWi7TWKeBZYN0a7oOAJ/zjfwDjlVJKa/2V1nqF//63QFwpFYYNlX8C1w1XHcMj5m/po8rY6p9jpamQdlzcEE1wI0TpqoHV8mj0luamaIKIWd5zakiFoDDyx49ZEj/GOzbkw52K8MzxwNIEoLEy4/fvCMHQC1jW4rzUf6/Na7TWNrAWKFnnmsOAr7TWybZuopQ6VSk1Uyk1c6NtxvMzcFoOlBBool/k7MoH7jahyC7R5fO5JPIUz9jjoPdoaTqYQReBEATm02646l/OirzC29HzGfjGUeJjJ+0vfkelLglFaxejZfcJ4WdVVziUkYkHSWtzk61jaKuZx7oz8mevUUqNwHMvnba+m2itJ2mtR2mtR3Xt2vW/IrohSAzYh8OTlwdkMn7/dTHMXEpfVRYKDd1du4JDzI950Rnj7VshDKUU9TrGvKF/kKZCw2Y7MSzhpx2GwIIZwyy2MJZTtPoz8bGT9q0pV4cjB8YywmMxJByDavJJEBVZbzriiZQCLSNZvYEV67tGKWUBBUClf94beAk4Xmv9Qwfw2SiwI3ks0H53zBBM8L/U/I09zFnimg00W1P9VFnzvrmC+GvJnYxIPsaXfU+UpoIdMjebpcJjwTi+YLg1en9z40NBfGDuxN/tvfhy9C0Q7STKxa0u5QLrWfJVo8hz6gjBMAMYrJQaoJSKAkcC625CPAUvuAxwOPCe1lorpQqB14GLtNYfdwCXjYeyufzWnM5vEnfDqN9Ls0H5E1yFYLFx/UDZrdEH4Ev5/IG4ZZBPA0bNMnHrTpV9yy2RB7yTEAhxs+WMF1ZwbH/c9FZrvDoGYbwV/z8ut09kYbd9RfZ0b4XaFZxpTaFC54ukOW+wYPBjBmcBU4F5wPNa62+VUlcrpYLNAh4BSpRSC4HzgCCl9Sxgc+AypdQs/1+3DeW0MWCsnMUlkaexlIMOQRMyA6jSeXzeR77tg90yLTQEguqIusm8G/sLx3x6gHwmUO0qDjQ/4yNnS+gr3/CwlU9X+FnVx7vziL1fKLgA5Js2fdRqOq/6BNKye6mnbe/3ODd9Jmw/8Reu7nh0SCqA1voN4I113ru8xXECOKKNv7sWuLYjOGxsBAUnl1iTSS/sT3TwOFE+Srv8y92SeT2PZ1dRJuBikNYmEeXguo541eToxMd0U34ar/CCE7hLbrOPYEx/6ScFjYbnIinPG0LmI3WtUZs3gGvs4zjc/ICCELhnr2u4kq1j38AXwJidoVCu1iNte1ljus3w7MaH9BzeZOD6C8x+5gzcZSHYnxZNJxLkNq6UJsLazXZjWPIxABxbPg1ShagTbuAuKVY16ESNKBeAG4qvo3/iaZ4eORlieaJc0qkUufiaeQgshtbWlHQdg3f/J6M3wlsXZfz+WcHQTjgt0g7tEGyO81TRGVg4nDX7YGkq2G5zoZIdgmpjFaK9M4LA/CPRW3E+vE2US0vYIUhzzl/+IXPjv6dANaBj+dJ0mutfQHzctIqNJTOvUGQFQzuhW0wkx5Zf/GbHd+AL19/7QHiSR1bP5s7IvTxgH0B93zB0NQnPVqNpLC+ACDghUCiOqX2YV6MXc/TsiVBfIcrF8a2pCclrSI+9TJQLhCv+sqZ4WwYn/s4KXSwyv7OCoZ1Y0/9AdkzcA4B25Sf4oMQ3DDR8N5LwIDZrVzDB/JQpzs4kum0tygWgUeUwz+3D673OAUu29faabruyffJBGnQsFG62EcnZbGUsoWf9PHBSolyC/mMuimQIlC1Fi3kkbDG42iCNha1NXAEu8nXomwjSZg6rKcbRqineIIkzK2+im7naO9EOko8yCMwPVUtRNSuhaJAYF4BLSm5nxpIqjirpy/7CezKkfK3YwcCQdk+wzuIn7EfX/v1vjjyI8ZkDY88R5fNObC9ebdyaAcNHc0TBus0bMovc2iVcZT1GX6McWyChI2sxtBPRstmcY/2DrZMPUzH6fGk6hMldEjSKuy36AJ1mPyzKBcDV0Jk6SuoXiqerdi7/ikmRW8lXjegQKBRh6gcU+NGHGcswyr6V5QK8Fdub+5yDmNd5FxCOecQbVzPRmsYsdyCpzXbI+P2zgqGdyC2fwznWP8klie3Kt8RQGr5z+/B8lz+INyBraepq6cUGmFjzIC9Er+YvP5wAdWWiXGKJ1extfsEz9jjq++8tygVoHdQUFlS1ef250z6EBh1rFcOTQienhkFqOZtXfhCCCn7v97g+fQyN25yQ8btnBUM74fiT6IrI3+m0YN3C7sxD4TLHHcjb+YeCcMGdraKU6UKAUEzw7VMzGGKUeifCi1/gR3/M2ZeG3vJ1DBVGMaW6C4tytgIzKsplbadB3G4fwWpdKG+9ANfUXcG7sfM5evGFUCGzD0KAwLrUqFYZkZlCVjC0Fy32Y8hZ/aUwGc8l0Fk10DWxGISzXVb33IMdkvdRo3NDYTG0SleV9qP7grKXWuNt1yiMy/OuYtfkXdzR924Q9qNjN9KVKhSEws0GGkf7uUnS48Yfwy/Erib/1cxvxpUVDO2EbrHY6BD0vLkj/89U6jxuWHkyJNaKcmmZXRIGi4EQ+dGbLIbozRR9dtMvXL3xEfAJQx1Dz1XTmRH/AyYudq50HTagNTamdyw+bhRJ7buI7TZ3ItioyAqGdqKVYAiBVjwnsg1zdX/vRFjbKir/nEciN3OnfSgVgw4R5QKeNeU2aX6y8SDHjLPU9Ra9MAjNs+vv5rno1Vy2ZCKsWSDMxns2J6QvoHyXK2Wp4NUxOIFgEFb+VpbsyJDk35njDhBZb7KCoZ1YOvBItkw87BUrhUAwjEzOZKha6p0ID+JYw0rGm1/xnrstdV3k6xgqVRHvuyN5sPA8yJPVRFd0H8tuqTsp1V3EnxPACGce26kF9Ewvg3SjLJkWCo0jLzNRuKGxGIKwgosScbNl6xjaCVdFqCOXWp1LVMl3V/1T3e0UmL4LSdzs9UbxNuoHrMofoF+xKJ9z827i+9V1jI4XcVq8QJRLMMEdbYTC0gSNg0EER1xQBQveDZGHKflkIRz6N1E+L1gHUpVM0LXPUC7oKavgFNR8x62R+73YlNs74/fPWgztRGHZv7nYmsw+qZtYuH04yvdDs5G6Lxjuit5Lj28ekOWCtxgXUMeg5FxI1f/yH2xEdC37mMmR6+ii1so/J7zAfLNWLJ2x5b0OVcuIVkm7teANcxwvOGOZG9sKcopEueQmVnOY+RGfucOp6Ts+4/fPCoZ2onPVN5xqvU4EWyR9bF0oNP92h3J7zh8hp1CWTMsFJgSL3/kNt/NA5A5urPqzuB89nihnF/Nb7rMPomzQTzrPZxyKFoJB2GKozB/C9emjWKM7i1u9AN3cMgarUnaofQfWLpcl48+pSfYBrBme+Z0Is66kdsMTBpdbT9Jz/lIY+mdRNgqXRXoz3ozuxbnCVZopqxOL3B70UhWhcJds68zBMPyKZ2m/vi8oX3F3Ztceu8hyAZaqzXDcEvJyYmwX6yzKparTICY5B7KPOZMuWr6P1M2pa4lGEvSpLIeVI0XTeQP3rEJj25nvaZUVDO2FP8HHmbNIV8hOKPAqnwtUPZunv4P0DhDJEeNS2nNvjkx15/3oueSEwGKAlm42WesumOAD1Uoia5cAJaJ8LohewvKGRkb2KOTlbkNFuVipGgaolRhodBiscK2xm8aNdPzF+z3+Hr0R841X4Mx3M3r/rCupnWjK/8YMhdl7cc6lLHB7cV/DBVC9VJRLcx1DOAKsrdwl0nx8QXlH5F76f3GdLBfA9Z9VGNyhfcve5f3Yn6nVOTR27i9NB2iRriqdlWRYVOk8UkREuGQFQ3sRTCiMUFRpfmMMYZHu6Z0I8+mxajrPRa/mdvtwFg/OvD90XSitsXU4/OiJSAHz3L4kiIpzAbg+dROPRG7mscrj4MdPRLkECsWF6VNYOPoaUS4QrvjLkuJd2DY5ibluP5H5nRUM7cR3m59M/8RkGnRMPJsDYGz6X4wwlngnwtpNvHE1Oxrf8bk7lMrCLUW5AJSqnnzkbsUVsfOhyxaiXJZ224P9UjdSpovEnxPAFnoxg9QKuujK0NQxaBSOsMvPg252QYYkY8tFiQipbIyhnfBMcEW5LiQSkd+G8PzUvVQa/p69IWkUN8r4nvyKLsBmonxOj1zLqsYEvY0crurURZRLqwkeAoVCoVtU9wovxv79r448zpCPp8EWT4rSuZ8jWGNHyOvSm7s2z3yKaEt0XzubByL301NVgs783txZi6Gd6LH6A663Hub49IXM2OoqaTq+2RuOQFmw+cvlkSfZ4rv7RbkAOFrTmXq2t78S376yz6ppvBy9jHwaxQU4eM/KCcm40X6mXy+1hpzaxaJcAN7Uu/Ceux3fG4MgV7ZIMzdRxr7mDD50t2J5v8y3mekQwaCU2lcpNV8ptVApdWEbn8eUUs/5n3+ulOrf4rOL/PfnK6Xe0uN1AAAgAElEQVT26Qg+GwOFa+dxtPUeQDj2Y0AzRw/iAnUuFPYT5RLEXGxtii82ALfZ13FD5CHuTF8NK74S5RJPrmGk8QP32gfx/RaZ75K5LhRgB44CYdfWis4juST9e6p1p1BYUwP0UgarUvZLvAFl34lyCebUP5zdWbL5cRm//wYLBqWUCdwL7AcMB45SSg1f57KTgCqt9ebA7cBN/t8OB44ERgD7Avf53xc++AP3EmsyW35/tzAZTzCs1MW86e4krt0kIoV87fYnhRWKCb6lXuC1EgB5QeW7Sz5wt2Z1l9/IcgHmMoBZ7kDeNXaB/O6iXCpzBzLZ2ZN6ckJhTd2jbuYq63H+lLgfln4qyiVwz+aQFOme3BEWww7AQq31Iq11CngWOGidaw4CnvCP/wGMV0op//1ntdZJrfViYKH/faFDYPZuayykpGqOMBtPMBRQzw56NjRWi3JZ3GM/DkxdTzV5oZjgCo0bmnYh3v2HGKXkV82T5QKcrS/gYvsULo38GXptL8olnqxghFqMwkVJC3CC+Es4xk2wBetNkYfYZfqRGb9/RwiGXsCyFuel/nttXqO1toG1eJU+7flbAJRSpyqlZiqlZpaXl3cA7f8QTXUMBkp6sQEmGjcwwx3CI8Z1UDZXlIvbYj8GcQ2dcNUxBJrfRdbTjJwjn5IZpjqGQWVv83rsEpbrLlQWbiVNB1oF5mXneErFKdVdSBAVEZodIRhUG++tO+rWd017/tZ7U+tJWutRWutRXbtmvpWyqywadMzTREOw+M2nHyuDKlrhQTxgxeu8Gr2Ym9O/499bnCfKBcJVx1AX7coMdwtSWKHQih9XV3Jb5D7eSx8L374kzMab6rfZRzBzm6uFuYCBJh0ShWJB0Rh2Td7FYt1jk61jKAX6tDjvDaxY3zVKKQsoACrb+behwOwBJzM8+RiuNsQXYoDD3KlsqbxMDu3K9pnJSa5hK2MJ3+r+lHcaIsoFYC4D+dwdxknOhdBH1q//Q7c9OSJ1JTW6k7iQAhjICrpRRR6NINCDpxWa6hjADYEF09piCMd+DBolst50RB3DDGCwUmoAsBwvmHz0OtdMASYCnwKHA+9prbVSagrwtFLqNrzk98HAvzuAU4cjGLbL6UJJVK4vUYCLeYTPjGGAN6lEI/a+e2IH4zt6rkkAAyXZcKJ7GY2Og6mVeIC1uY7BQIWgwC1c8Rfvx7nYeprdP30IRr8jSEVzdfp4KnQ+D0aP56WRE8S4APSv/oy/Rx7GEXJdb7Bg0FrbSqmzgKmACTyqtf5WKXU1MFNrPQV4BHhSKbUQz1I40v/bb5VSzwNzARv4gw7DhsptoN+qqdwWeZXz0mdy7pAtEK2n1RqjhR/ddWxRwRCk1p1uvUq/RRZwrCAbz4+eS4LdmIOu3hJV2FeMy5AVrzAt+ggrdIn8QgwQorYPgWAoUnV0apR1FGgNU93RHh8dEW9ln5cqZzfzay5Ln0Buv27smOH7d0jls9b6DeCNdd67vMVxAmizGb3W+jpAvrvYL6C4Zj5jjE85jzNxpFMy/Qm1QPfm0dR+3N9ta0T3lGtRxxCGwPwzxmV8a/XjOOsd3CVDUSPlBEM8XcVgYzmXp07gmC36cYAYEw+tKp+FLZgfCnfipQVpxpqzxauwXa3ZTn3PWjqxvzsblhVCH8EESf/ZvOtsR/8+u2VcMGQrn9sJ7SesXmA9y54LrxUm4y2+a+nEdHckTq5sK+faeHc+c4dhY4YiwDpULaVE1QDgOtJ8vAXvS3cwywpGyTLRmk/d4cxyB/G8Ow5KNhflsyZnAK+4u5LSEfFx42jNA9E7ONV8nfN4ChZNF+UTiMl81UC8IfPWVFYwtBdao1EMVsvpVidbFRkMmwIjwT7GDNxqWTP8+27/x5Gpy0gSkXdPAAYurvKMYdeRDcwHbrbh6kd6Vn4uysXV8If0OdzrHMyF6VOgv+zGQXmJleyo5nnpieL9vgJryk+UlI4H+fPoXOtFDv33URm/fVYwtBe+YHBR4toNhsX49O38S23Hg9HbUStmitIJMkqkAmUtobVGAVp5Q9sVztgKXCQnWW8w9ntZSzOoYbAMhaubayykMHzN2zwXu4YFujfLincS5eL9NhqtTFwtX4/TaHbme92HJJGmXmSZRFYwtBMpM4dyXYhW8osfSrFE96DO8HaSc4VjHlsuf473oudxu3sULw+SLeLy1jrdZDFoYVdSdawXH7jb+G422efkuJqp0Qu43Po7i2LH4H72gCifwCX6pLMX7wy5UpSKq706BqWUV/0sbDF8UziOI4zbWKMLRMZNVjC0EzP7ncKY1J1oJT/BcdKcrKawpeHVMUi7S3LS1Qw0VrHM2IzVcdlUVVdrPneHMdcYzGHJK2jcfD9RPvNK9uJk50LSRMTHjdawmaog32jEUFq8/iWwpjRKvBLb1RrlC4Yw7ESoNZiGQqM2zXTV/xUE7pLlqgd94lEyX3vdDG0nuCjyDK+yp89NOkvKu/9vzHkMXfMdXi9FGbgajk9fxGa5cVY0JLBzu4lxCfgoFITA0nS19uMvEdDy1pT2XSTnWv/gmH/PhPFyvaRcV3Ne+kwaYt24rfFgPhtzoGgK+PCqdzjCmcxc1SfrSgozhq18mXsid/GAdSyT+wn7in1BoP1GtOLaDRpHKw5lOuNXPCjKJfCjxw2Hw4wPUWWyjetGrZzMB9aZngsS6WraIP7i178IjxvV1EE0RU5athGkq2G6O5Il1gDKKcSOdBLlk5euYGu+5wO2470+f8z4/bOCoZ0orv+B3YzZREyF7Qibvb5gKDe7cUTycup6jRHlo7SLRvnxF2Eh5Wo+iJ7DMc4r3Bp9gMji90X5xO06eqpKnuIAXhh4vSgX18+8cQOFQthi+LpwPH9SF+AoMxRCczdjNluoUs4wp8D8qaJ8AutyljGcf3c9LOP3zwqGdsMFFCc5z3PSkr/IMvE1vbSRwww9lHRcto6hIt6P6XpbdAiykhzXpp9RRp5KAPJ9pLR2cbTiR6M3P3baWpiLZqo7ikXWIB6x9yPVY6Qon/JYXz5Uo3GV2WQ9SMHVmnsid3GQO41TrNdQP0wT5RPEX0pULSX1CzN++6xgaC+0V+DWgwp6JBfJUvEthhyV4hDjI1SVLJ+vu/wfZzrn++4SYT+6LzS1YbU6l4Ly05xHqMUMrXxPlIur4Zz0Wbwb25Nr7ONI9N1NlE9x44/sxpde/EXYYvDqGMAwDJwQBJ+DuN3v1DTOnHdcxivDs4Kh3dBN7hJDuvNivJBRifuZkbMrt0fvJ6f0Y1E+WmuUIhSpvNrx4y+G1yREeoJrNFop9udDDlkq2/klyPyJmAZxkrippCifkVVvcZt7E9+pgXxdtLcoF8f1spJQRiiyktZaJXythmArv9lNhudVVjC0Ew1WIUt191C4S1wM1lBA2soFmi0IKey8/FHeMc/myeiR3NHvHlEu61oM0n70svhA3uE3EII0Z601M2JncEzyWb6JnUTu57eJ8gmUrfeMnfhnv0tFmbh+Y0rD8OoYpMfNFwV7cUb8RpIq7hPMLJ+sYGgn/tXrZA53r0crE0PaXZKo4TzreQY7ngtJ2l0StWspYS3VVjGrrDY34MsYXBRvO9tTFu3DfskbWDP0GFE+s4v24iLjHFwM+XGjoYha4irt7bYnXP+C6yUtWIbCFq5jCFpiGL7FIF35rDUYyktz9t7IWgyhhNYaQ8FKqxcLYiNkySTqONt6mf62JxikA6yBH31b91t2q3xRlItrxjk1/Wfm5O/GPN2PVLyLKJ9ggoehMDLQilEmLoa4QuFVMigmuq9w1Zw9wEmLMXG15oTUX3m30/7smbyZyj1uFuMCsFPlyzzReDZGsMdlhgVVVjC0E6NWPs3dxq28mTuBO7rJtn1w/QVGNQVYpVtda1yl2MmewcEVD8kyadEP6FhzGrGVsn2k9lgxibecU1GhCMy7GEqjmgKs0oWR3u6+lnKJ6JTofhWuhs/1MCpjvUkQwzWiYlwAOtnVDNBLmREZxZPdLwAzs3yygqGdKGn8kW353vNBSpu9vqaXtPL5v+T1lPWX3W2KpjoGE0Paj964lpmx09m9/k0utZ6iYKlsPrrlJsijgddj+3Jzn/tFuQSCQBlWKNwlnxYdwJ8jlzW7SwQtGFdrDjA+ZYCzmNPNKeR8+6wYF6BJSP5oDeDjvH3BzOyOK1nB0E54vRcVBzf+kxtWnizKxfEnkDIjzNX9SUSLRfmsyNnCD7DKa8XaTdNF1RAjFYogovLdJdVWVxZHRff9w9Wa5+3dWREbxP32gdRuJpuuuibSm9mRLdGG/I5yrqu5PXIfOzVO5xDzX8QXS9cxePOoi6qhX+M3GXezZQVDO6G0g6sM8t06etqlsmR8zc8y4FhzGrlrvhal82XxflxrnglKPsDq+OmqhmH6WnE43CWbO4vZufpV0YCvg8EF9mnMLdiV+5yDqekzVowLQM/G+YxzPhULsLaEu27wWTrNWWscDMbYn3DRirOhMbMtQ7KCoZ1Q2vX2GzAML99ZEOnOfRiaeIxvi8ZzbeQxCld8KMrHC7DiZ2xp0W0aA3eJaZi4KPEAq9YuLopRzpccX3E7uJIBVu81YiiKqUEn1opxAdi++m3+mrybxeYAPig4CAy5DWqbuqsG6arC46bM6slX1rbZrKSwozranYX0hRAsfi4GCWIYkZj/huwg3m/5Xbxin8mb+YdyWrfJolyCCW2Yht9XXzZj68ec4bxt7h4KPzrJWhbEjmOPqn/wZuxCenwu27vJq2Mw+Do6ksklZ0M0V4yJqzWm0hiG6Y0b4fjLv/L24cqCq1BNgiGblRRKvNvjJM41L27aGUx0gteVcbn1d3olfwCat4+UguUmiZMkZeWxRhWDUr/8RxsJjhnln86urM3py4HJ61g44k9iXAC+6Lwnd8ZOASXvR9euS0Q5GIYKRfDZS1oAS2m0Y4fC0lS+YJDe3c5xNaZSLeIvWYshlHC1t96VRfvyaWRHEHQnqcYqfm+9RdeUF+uQNnuDOoYh6XkcUfsk2CkxLnasiPPSZ7K8aDTL6UoiUiDGBeQneEu4viAI+gFJW5pojVYG+6Xf5qEf94HaVWJUHBcOTF7LV10mcGjqahbu/bgYF4D91z7NvVWnYQgpohskGJRSxUqpaUqpBf5r0Xqum+hfs0ApNdF/L1cp9bpS6jul1LdKqRs3hMvGxj4r7uNG51a+6jyWK3MvzXj6WEsE2oxpmtjaQItXaXqdZ4ck53Jkw9PgyPXgCX6biGlwrDmNkuWybbcPX3Ub/2g4sdklIFg70ORmM7x9jaUViiDNGSF3SUu4wNd6IImc7t65cEp6J6eGEncN3+WM5ObOF0GnzBZqbqjFcCHwrtZ6MPCuf94KSqli4ApgR2AH4IoWAuQWrfVQYFtgF6WU7D6MP4PiZCkDKMUyDBzpFsFus+a3R+pWvus/UZSPp/kpCIFWbK5dynexiYxY8xanW6/SvVS+r76B5rNOe3BW8SSIy1kwTe6SpviLrAvyjc6/5YqCa1u42QStKSfNUea79Ewu5GTzdbrNka058YSmQXW0Jx9Fd4VoZjcO2lDBcBDwhH/8BHBwG9fsA0zTWldqrauAacC+WusGrfX7AFrrFPAl0HsD+Ww0KO3iYjKm5lWerz0ekrViXJoyb0yTpbo7yUhnMS4AC3K2Zpq1ewutWDIf3Sau0lgGuFqFwI/uBVgTkQKWGb3AlNtN11ZRHrP3oSpvMA84E1jVb38xLgBlZncWRzZHGfLjRtkJbog8wuY1MxlnzKJw2btiXICmeEuRW8VWiS8gWZfR22+oYOiutV4J4L+2tcFuL2BZi/NS/70mKKUKgQPxrI42oZQ6VSk1Uyk1s7y8fANp/xfwJXiMFMW6WjTbRWtvK03DMDnJfIOSsk/FuAB81nlvHo6fEAqLwQ3qGEwzJH50L8Da117ChIYXRRUKO5LHVfZEyoq25zlnHOU9x4lxARjcOIdxyfdQIbAYAmWrKf4SEoViWGoO19VdDmszWzv1i4JBKfWOUuqbNv4d1M57tJWi0uSLUUpZwDPAXVrr9e44o7WepLUepbUe1bVr13beuuOgtOu5S5oGsZw7KVEynEHJyazsOZ5zrBfZrEy2jsF1XG/j9BBM8ODeluH31ZcucMMLsA5KzeekhkehsUqMieu6xEgRMVw2Yw1mvVywF2Dn+nc4vu5RVsQG8GLO4aJuNtcvPAyykqQVisVWf77M+Q3e8kjG59Qv2rVa6z3X95lSarVSqqfWeqVSqidQ1sZlpcDYFue9gektzicBC7TWd7SLsRCWR/uTTBWEwl3ScsMVjRIfxL9fdQ09Ghdw52aP83DtaN7Oleto2hR/Mc1QpGR+E9uW5U5RszUl+KwitcuZHz+B6WVX8Uj0EYq/GAyj/inGBz9pYXl8MLPSfTkswwHW1lSCcWP5gkGuEBFgWnwfZuQcwBjb9wZsYnUMU4Ag8jkReKWNa6YCeyulivyg897+eyilrgUKgHM2kMdGx0slp3JXzh9auEvkJri59kdusiZRUr/Az7mW1YqVdnAxwYpR58bBkMuCTkc786S9J415/TgsdQUfj7hKjAvAJ7njeC7/uFBYU8E4adq+Unrc+Bv1RJVD3K4VbRfSXMdg0EAcx4yLcQEvK8pQngUDbHJ1DDcCeymlFgB7+ecopUYppR4G0FpXAtcAM/x/V2utK5VSvYFLgOHAl0qpWUop2e50PwPH1ZiGojLel9cZk/E2uC1hNlbwO2s6+akyb8MV4ewSpV1cZdAvMZ8/pB+HhkoxLqmc7lxm/576ki2pIY+kIVdNC6CcJDHSGIGwFPWjewuvaXrtQqStKe1ns41s+JQX1h4J5d+JcUlGC9kjeQulvf6Ps9N/5LOxT4txAfh93SSuX3GSWGB+g1IktNYVwPg23p8JnNzi/FHg0XWuKaXt+EMoceLqG2hMO3w48DruoAf758p1NA00PdNvFCev+TloZdAjtYQj3CmQuAqEfh/tuhi4RP39GAYuX4CkQXpa5S0MSC/k3R7+dJDM2FqnwaASD8x7DQaVKW+Fu8pkkd4M7cc5pFPSYzpBjlvP8k4j+JN1KXeWDMro/bOVz+1Esb2aErcCMxT7MTSnq+6TvIl/9T9blI+hXW+hafKjywmqeMU3LIofS4+yDzjC/IABq94W4wKgcNHKYH7BrkyIPgQZnuAt0eRKMs1QuJKeyJ3I37rfHIqsJCNZy0nm6xTVL2KiOZVhs64T4wJ+sguKRLSYjxmZ8cB8VjC0F9oFZbBV1TvMUMdD5XoTqDY6gh3cTNOgks40CrtL/h3bmY9y9ghJPyDv3mZIspKC+IsbyWGlLhatmE9FC7nHPojGgsFMsg/g+/6y+2GvoYjKWK9QVIWbiUoui0ymS+08tjUW0H31B2JcoFmhKHCq2d35FOorMnr/rGBoJwz/QRlKk6uSoi4BjaJG56LMCKdYrzOo/B0xLgDv5O7LW3mHtrAYZBvFQbMfXQn70Q0//tItuYyT7WehZqUYl2SsmFvs35EoHsJUdzTLuspu1DMq9Tm71E0VC7C2hOMHvi3fmlIh2fa0R3IRt+pbMx5/yQqGdkJpB42BEYLFr7br9mydfJjaHr/heHMaAytl6xgiTiM5JCEEvuKW+zE4Idiox9AOrjLpli7lNP0C1K4Q46KdFMXUEMWmn1pFXu1iMS4A41PvsW/181Tl9OEB4yjovJkYl2CnP9OycLV8mvMcYxizOu8uJjTl6vM3McyPjKDRyCXHzxJwXUdMqrp+YEwpQpFdcnHVpSjD4rW+D7J56mkW9thKjEuzH91zJSlhwfBBdAw94jamIV8YGa/8ji/jpzO3fBLXWo8y5GsD9vxIjI+hHVzDZG1Ob55Vh3F6Qa9f/qONBMfP2LIsr45Bety8au3Jqu7FbM88741NrI7hfwaP5p/KS4XHNwXKHMGc63jlPO6J3EVuzWI/u0RaK/bahVimgSMbl6cx1pUH7AOxO/flJOcSnhlytyifdyLj+LDgoFAURrq+VmxZQfGf7MMy/O1yozpNF6cM0gkxLk2/jWlSTR6Nwvuouy4opTbZOob/GTiuxlCK2tzeTLbH48QLxbhY9as4wPyMaLoGV8m7S4JAWZfGRVxnPoxbIeeiqM3pxY32UbhFA3GNCHYQEBdCJ6eGPF0fjpRMNxAMVigsTRMHrUz6Ns5jKmfCss/FuFR1GsCOiXto7DeeG+2jefU3z4pxAbg8dRt/+WFiU/1LplukZwVDO3F19V85uep2qjsP5RL7JJw8ObPXdbxyfcOy0CFo+2BoF61MCtPlHG29h1u3WoyLa6foTD0mDkcZ0xi9/CkxLgBXNlzHaauuCEWA1V03wCqtUGgXV5kYpvx+DDYWqykmEvfaW0tbvhGdQilFdd4gDktegdNz+4zePysY2okip4pctx7TUChcHEH3jWsHFawRJpo38XRf2bYPSnsFbhheyMpx5CZ4QdkM5sRPIb/8S8aqLxhRJZux5f02JisLt2XLxMPoPjuKcQkK3DyLwRDP2LrCOpfH+94AQaM4wTkVbVjJn8wX6VT3I78z32fc7D+LcQHPmnIxcaL5fKGH4GTrGMIJhUYrkz6Vn7I4fiwsmyHGJWhtYFgRHDOOrWXdJa9F92Vm5/EYhlfILhl/cYPfxjTRmOJuNtN3s5lmhDpycZB7VrXxntyUPhJVMpBH7P/j435/EOMCUEUejZHiULQLidev4NzIi+TULWWQWkGfik/EuACYfjZbrlPHYcaHuJVLMnr/rGBoJ5R2QBmYTVlJcotfmggrdTFmJMaR7mvsuOZFMS4Ar1r78GXnPVH+JjSupGBoYU1pJV/HEFgMnVOruNiajFMm1w+oJtaD+50JmEX9+FwP44eiXcS4ABxgv8N2a99uSgHXgnPK9a0VK+LFXxTSCoWDNizy7ApujT6ALp2Z0ftnBUM7ERS4NS9+cgvO8u5j2Sl5D7p4EOPcT9myRrZKM9+pIk/XgWFRr2PezmlScIP4SwStTHE/uomn+eXblZxqvY7OsObXEjpVTx+1GkunGGysoNvab8S4ABziTmPb6rdpyOnJ1enjcLoMFeOiW2QlhcHN9p4exdyiPTD89UbbmW0Dnq1jaCc+MUfj5GxBF99icATTDm0/MmYZygveCQ/iuxMXsWb1ML4ddAcjko8xo7ecJtocmI9g4/nSJfGMcQADi3uS72vFruC46VL5JR/FzqWubAh/tF5izIIfgUPF+Bg4aGWRjJfwqLMfFxT0E1uQ3KY6hkgoAvOT9T7oHn0ZblYDmXfPZi2GduKO6Ml8WnIwhh9g1YIWQ7dVH/BY5CYi6WocLAwtZ4KDl5WEMrGCGINgk8HKnAHcmj4cI78H1+b8hb8NeESMC8AUNY55hWOb6l8kLU3ttq5jkNaKTbyspCg2g1UpboPc7nYtW6lU6AKqcvqJ1nkoN4VlOKigt5aTWYshKxjaCdcFQymSud2ZZO9PspNc+X68fjnjzNn+xLLELQbPzWbSuXE5d0buQa38SoxLRe5A7nYOxczviqkUtnAn3G5OGZ2dapTlTXA3wxO8FQJrKhLzssiQ/W1M7YBh0jldxrTYBajv3xTj8mPn7dgy8TBm3x14mv14eJtnvdYCQnjWuJwjFvy1yZWU6XGTFQztxPOJ0zlo9T0k8/tyvX0MyYKBcmR8P3rEimIrS76C1Y+/xJw6DjI/waiR6wekUnX0pAILlwPsaRxcdp8YF4BJ+kr2XXFPk+anQyAYTCvqNYQUVyg8wRD8Nm6G/egtYWuTRqMTyoxgGLJWr+NqTFwwLJxYEfsmb6Ru0ISMcsgKhnaiM7WYyntg+TTgpFNyZHx/o2lZ3FhwGVf1vFeOC55gQJli2k1LDFr1Bp/G/4jZuIYt3XlsVysbmDe0izJMGvIGMCDxFHVbHCJHpikwH0UL+9G11uyfvI5pgy9vDrAKjpuiugVcZE2GmpVMUB9z7NzTwE6KcEk7LhY2GBEMK8J3ui+pWGY7LWQFQzthYaONCIU13/N1/GRyfnxXjIsOKlitKKYh7y653z2M+SXjUUH8RTDtMNCKI5GYl5VEGLRiC9M00Bi4gs9qRe4QrrJPQOV140VzX/7R52IxLmlH00gcI5qL8rfJlUxzLmxYzMnGa9BYRQ+jir51szPu1w+QclzfYjCxcDjOfBtr1ayMcsgKhnYiqtNgRpvK9yWDz41mHgvdzbCiUfZKvM1vqx4S4wLwlDOe0pKdMJr86IKCoVW6qoES9KMHLgFlmMTdOq63HsZa+rEYn/JYX55mX4gX8IM5kPl5O4hxSTsufzJfZIuK95r6SElamiq4txn14y+ItehI2y4WDhgRLAOuiTxOztL3M8ohKxjaA9fBVBrMCKavFUsWuM3qfih7pm7BsiIMT3/LTg3TxbhorenrltLZrQErRrkuwBas7g3cbBgREPajpx0X07cYLG1ztPUeVsU8MT7RRAXDjaXg2AzSpQyskWtal3ZcjrWm0bf63+hIJy5In0Jjb7mNg5Tru4atKFrJ7rliu5qnnD1Z0X0sRlNsKpuuGjq4jsNkezzl+SOaCtwk3SW263o9m5RfxyDoLkk5LlOjf2X0qmew8zZjdPJ+qgceKMZHuYHmFyFp5NKgOolxSTkuN9hH82OPvVpMcLlnteWat3jJuADS9RzsTuO4ZVeIcUk5LhYuyrQwrSjPO+NIFA8R49PKYkC2RUfKdnnIOYBVvffFsgxsbWQ8/pIVDO1ACpNL7JNY0W1Mk7sk05WILbH1yhd40vI2K3eV5aX9CSGVSmMp13Oz+XUMkjGPBfmj+Zs+HgyLpzufzNndHhXjkrZdXnDGUtV1BwwrCMwLJi24rd0lstZUs5vNNBQj1ULU2mVifHQLwVBtFLE0ZygomeUx7bgUU0MOCQylsDE3LYtBKVWslJqmlFrgvxat57qJ/jULlFIT2/h8iikMb+cAACAASURBVFJKtj7/Z5CyHRQuMcvAzSnmDvtQagvltJvOjcvZRi0EQBsWJoJ9m1L+5ipmjKjTwEORW+i8ZKoYnx/jw3naPBCUwjKVaNphynYYoRaTZ1c1BVgzPcFbwW5e/FzDErU007ZLlDRYMUxD8c/oFeR9O1mMz3sFhzC+0z8hp4gPIrtwR/8HIVdms560o5keO48R8+7EMgzPNZthD8WGisQLgXe11oOBd/3zVlBKFQNXADsCOwBXtBQgSqlDgboN5LFRYVcvZ3H8WIavehniBdxhH05t4TAxPspJNW1AkzJyaVC5YlzSSU8wKCuGacBe5pdE1i4R4xNtXM0QcyUAYxrf5U/VN4pxSScTvB67hM1XvIJhWjTomLdBjhC0m/L2wTZMtIqIWppp2yGCDVYc01CkMUXTVZNph0gk4ikUwpl+Xrqq47nZDMW+qZtYtmVmO+FuqGA4CHjCP34COLiNa/YBpmmtK7XWVcA0YF8ApVQecB5w7Qby2KiwU14+s2FGMJWmO5WQrBHjYzgJksQAmNLlJI7vLOguCQRDJIZhyATKWmJM2WQeSXv6Sd/0En6TlGufbKcaAV9oWhbDk4+xcsvTxfhgp5rafnsWgysWYE25mkHJp1i85VlYhvJ4CcbtRtR8xJ8S9wOwqzuT8xefBEKFmmnbIUYKInEsU1Gqu5KMbFr7MXTXWq8E8F+7tXFNL6Cl87DUfw/gGuBWoOGXbqSUOlUpNVMpNbO8vHzDWP+HCNwlyooSsRv4PH4WPRY8l1EOLWHYSdLKc01I1zEkzVz+mj6F6q6jMSMyfV1awU551eCAVpaXFSSEdDIQDJ5WDLLxl49zduee/HMA+DBnPNd1vRmELJi0owFF1IpgGIEfXW7c9Gucy56JaQAUqHr6pH6AdKMIFzudwlQaZeVgGorjzLfpvCyzdVO/KBiUUu8opb5p499B7bxHWyNPK6VGAptrrV9qz5dorSdprUdprUd17dq1nbfuGNhp32KwYhiW7ysW1G7KzK4stDYHYPv6D7ms/gax3a+SKs5zzjhSxVs0NRhsCnIKwHITJFXco2FYXqGQUMsQJ1AoInEsw+AmaxLFC9s13DcKvlcD+SxvPADV0c34JrI1GDIBVrehihutSZRUfOm5bjBE55RyU9jKU2yCQk2prCTbVyiI5GIqxWnWa3RZ+lZGOfxil1ut9Z7r+0wptVop1VNrvVIp1RMoa+OyUmBsi/PewHRgJ2B7pdQSn0c3pdR0rfVYQoZ04EqyopgRTzAoweySZ/JPpDZiszvQI7WU3Z1P/WKczE9yJ1HHNmohOc4WWGYuC93NcK38jPMIYDqNpAxPMGijhQXjC/RMwvE1TiMSxzRgP/Nzair6Z5xHgC6JJRTHNLATvfQK+tV9B+mREIlnnIvdUMWR1nQWNR5AnTGKv6ZP5Y+DxtI940w8GG66ydJUgbAUcrPV23BD+iiO6L0jpqFwtIGRYWVrQ1eSKUCQZTQReKWNa6YCeyulivyg897AVK31/VrrzbTW/YFdge/DKBQAGiNFTLL3xy4agGlaOFoJB8pc4hG/AtsQdt+smc8rscvpWvUVhgF7pm5h0eATZbgAESdB2hcMjVZnVqpuYr7rtWYJf0qdSbrn9phC2SUt8du6pziz4noAtk7N4pyav0FirQiXZKPnPY7EcrAMg2nuKGqLRohwATDdJI7vnlX+3hlSFkO9jvKgcyCq13ZYpvLHTWaF1IYKhhuBvZRSC4C9/HOUUqOUUg8DaK0r8WIJM/x/V/vvbTKojvbgevsYjK5DsEwDG0vUj35W5fWcXOsFyggGsdCCk0rUAxCN52I1bWIk50d/MTKBN4uPA+Cz4oP5bc6DEJXJ2qrVObzi7kq0y4DmAKvguIm6CdJGjnfS1OdfxvJNJzzBEI3nYhqwnfqemGBVuONqGiwvwFsfKWFOZBuI5IhwSTQ20FetJlclfTeb2Vy4mSFskGDQWldorcdrrQf7r5X++zO11ie3uO5RrfXm/r/H2vieJVrrLTeEy8ZEY0M9nWikU8TbjOZ6+2hKu+0uxqeP/SMlbgXQwmIQEgzpRi87K9YpH8tUTIrcSt/vf/KIM4ZP1NbMLxgDeIF5odALAKnacnZU8+hEY1NKpqTFEHMbSZv+Ytc0bmQEVToZCIZOmIbBzZEH6fPt/f/f3nmHR1WlDfx37r1T0kOA0CGh915EQSkqgth7QUSwYEPXuvrZd1dEV1fXgiggIAsCIiooIioKiHRC7y0BQgLpZfr5/phJg5TJVIX7e548mTn33Jn3zi3vOe95S1hkAXiZ8bzf3u1geSCyK/8X9y9ISA6LLOas3fxmepzY42tKA9z+anEM5wUJB79mh3kscfYMNFUwwzmMk/E9wiaPUVpwqW5ziU2L4QT1wrfAWpwPgDkqHoOi0EPZT1TewbDIAtDcupemMh2AjgVredv6EhSeDossMRkb+ML0GjFFR9AUQYaMx66GL+bEKC24NPf3yzBVBivBZrNSIM2YImM8symlLM9VGMi3OIgxu9cYDKri8ZoKD46SWXhEFJqicJvtedb2eCOkMuiKwQtcFnf8XUR0LJqi0FycxFCYHjZ5ImQRTmM0ANvqjWAYH0JU3bDI4rKUzBji0dTwj4pft7/J8NOfARDnPE0/uRXshWGRRXp+G3N0HTRV4VrbP0jp/PewyOJyScyuYlwGj2JSPIvxYVIMB6J60Nk6DVNyf48dXQubV5LF7uRJMYsBp+YD0MG2lak54+BESljkkTb388YQEYuqCvKIxqaEdkChKwYvcFndJyoyOhaDKphrfI2u+8JTHMfldBEji5Cewh2qIghnOYYDUb151PYwkfGJ7hQUUkWGyTxhdTiJoRBpigX+BAvzHsVgjIwrrYdtd4ZpQdPm4AXHGHYl3w24S1nerU2ChPBUIiyyOTEbFFRFeNI+KGEza+VbHFyubKBJkXuNw4yDxjI9bHEMpQ4BEfFoiuBW9WdaHJ4XUhF0xeAFwpqHVRowmczuxWephs1dtdBSzCpXZ4ri3HEMLQs2Mpl/hC1KM0004Ed1IJopAoOiYEdFhMkkkF9kJYZiZIQn40ppXEV45JEWt5lNmGMxqAovajNptyc8dvQ8i4M1rk5YG3QHwG6MYzstw7Yw3/TEj7xr+AAcNgxqyQJrmK4bi51oUYwwuWfhZfE44XFXlcU57hfmOFRFcLXyO0nHF4dUBl0xeIFqySJHxCI8eVTsaOFzgbQJxtifISPZHV8Y48hmgNgK1vCkmzJn7WRgxCEAVFWwRzYj39wwLLIU5J5GERIR4Ul+FmY7urTmYsMAmglNFfRW9pCQvTUssuQXFnG5sp76LnfWgDrO01ztWBa2AUVC3m4uda0G1YCmKrxmH0VK20fDIkt+sY14CiDCbY4tKRwUrnt8k+jElOjxYI5HFeFRmrpi8II/jP35MuIGwLMwhRZy97EScorc3xsX4XnohTnaeGD6LF50/BcAg6Iw3v44vyeH5wYvyHE/9LRot2KwGWLZI5uVKYgQs9RwGf+Od5fPNChKWPMB5Z9OZ4rxHZKy3bmjEu0neJEpkLk7LPIYbNkUKjEgBAZFsFm2ISOmY1hkyc3ORBMuDLHujAqiJBgyTOdqm6MJa+peD6qGGqbZlK4YvGAFvVmV4FYMiiAsfsUl2Pev4HfTwzS3udNulzz0XGGqDxFhz6LI4F7v0FRPPqAw2dGPO2K5z/Y4WvJFAKTF9+FK+ySoH54U6TtsDThQx12VrGRhPlzXTUH2SQAi4zzpZLSS2VR4Hn5RttPka+4RuqYq9BR7qZf5R1hkyc3JJk3Ww1zHncLNaoznF9k7bGm34/P308bgTiJREv8ipK4Y/nQYcw/SKNJtbxRC8IHrejY0uCksstiyjtJYZFGnjvumUjwV5ZxhUgzRjmwsRvcNpCmCSdrHDNz3elhkOVGssczVh/jGrdzyqAoOl0SGyZW3de4auhmOemQR7rWpcHneZKUBEFO/GQBKaX0Ia8hlkVIS4ziNxexWUpoqeET7ip773g25LABHXfUYYH2P6F7uezo/Konxriehcehd0p0uyaOWyYw6+SZAafyL+ItFPp/zuBwOZhQ/yg2FZV4BK0Q/9seEp5C6I8dtE05o6L7BHYZY9ria4lBqTHsVcOwOJ4muTBzR7pGWEIJkJZ06RYdDLguAI30ng9Wt1I10j4YbFu1lofFFnGmbQi5Lkc3Bq673GJzvXjQ0KArHZD3yjaFNAFmCM9utGCLrNQdAaOGbaeYW28lzmbHGuGUxeNKFhEtpHsspJj7SgNngXlswqCJscQynC6zUJxtnlHudTlMUJtgf5n89Q1vESFcMNZCZfhiDcKLENy1ta6WeoE7B/rDIo+Uc5hTxmCLciepOJfRgmG0S9vqhDxxPTz9GtLBAnRalbU6hoYTpBm95dD4fGP6D6knNYcZCT2U/rqLQZ2A5cTKDBFEAdZIAUBTBM84HWNz2nyGXBUDJPeJ++MY0Asrs6OGYaaZlFzPK/hxHLngNoDQfUKgTxZXQ+uh8PlXfKPVCqms9xlrD/bh2LAq5LKmn82gqTpXeU4oAOxp2qYZUDl0x1MDJfZsBiG5a9uB9js+46si/wiJPdNERThkbl74v8Y93hmGEsytbcKP1RYydRpa2OdEgxPbQEmIKDpNhaAbC/ZsIz/pLOB5+Jw+5K9VGN2pT2qaFMaJ2qn047zZ+CzymR0tkU4ZY38La8rKQy3Ig0+1B17K+2z20zI4eHvfQ5rnrSeJYad4xg6ZQT+ThtIY+MPLkkX0YhJPoxm0B9yz8Wu13+h/+MKRy6IqhBgpT3e6Fzdr3Lm1zCjUso2K708UKazuONCi7mROKDrLA+DIybW3I5dl5spiNtKdlmzJvEpdQwvLbWGwOWtgPUOiJ7wAQnujecJhLio66zVeJbctMjo8qCxix/6WQy5JvsbMxy4Cx1cDSNtVg5KBsjF2LDrk8cvtC5hlfJSnSU8goTC6Z4DbdJDsOkR/XvrStZN3O5Qi9PAVH3NdNfHLP0rb+yk46Z3wbUjl0xVADhswdpFOPuIQy27BTGFDCMCred7KAN203Yul1f2mbSdroreyFMJhLzPuWcFPcHiKNZesb+0QyxyLaVLNXcNi/fxf1RS6iaZ/SNkUrWZgPfTCiciKFfBFNZGJZZHEr5TiNC3aGXJbdh9O4V11M7/iyFNsmbIxTl8DxLSGXx3R8HV3UI5iiy9K4TJY38FXr0JvZdh5NJ1mkozXuUtpWUozLFYbrZnFeS96Jfw6tYZmFwiVUlBDPpnTFUA1SSv5bfAVLGo6v0O4UGmoYFMOuvXsxYqdb0/jSNlE6ugntqNjpkow4OZnR2rIK7Z8Y72R+o6dDKgvAyZ1u//z6HS8qbXMZo9noaoPTGBtSWZwuyf8V3MSM1u+VmrUAXEJDkaGfvWRuW87zhv/RMaKsTrlJ2Pk/w2yU1DUhlcXudNGscDsno9qVpYwH0tSmpJrbhlQWgIztK1CEJKFt/9I21bMw7wjxPWWxO1mTLrC2u6ZCYSknWsgHorpiqIa9Jwv4taAJ0b1urtDuFKE/UQAt1r3EsojnaVG3LI1ByUXsDLE/+t6dW2hOOo7koRXaNTU8NainZXVhQuQb1G9VZvKzRTXlBtsrFDW7OKSybDySzXGriRad+1dodyuG0NvRlYO/UEQEcW0HlLappaPi0Lqrbt6+i87iIPakwRXauyv76XBqWRV7BY+U1Gx2GToS1XZQaZswRPKV8yJscUkhlWXt9n2MZjGXNK54/7hnDLpi+NOw5+dZXKjsYFC7xArti00jmVv3oZDKkpOdRYfC9Zyq2wdRbhQqwhTglv77HABaXHBthfYH7bMYf3hCSGXJzLey9nAOjboMKl1cBbcPOIQ+4O74ik+ZYFjE4LYVM96G4wY/kZVL76KVHKvbv8IoVDGYAJChvm7WuTOYNu9/Q4X2kaziqrS3QirLkdOFzMxswy8XzaqQM0qYonnc/hCFTQeFVJ4T677k/wyz6V2n4qK3UxhwoXsl/Slw2G1csPdNnon7kQaxFWviHjC1Z7P5gpDKs2PpFKKElboDKpbNFMZINrtaYzeEzlxitdlod3wheyJ6EN+k4npCHXKpZzsWMlkANn03lReUadzcreKDONKRww/GpzHvCZ3bYaHFRvcj07g6agfREaYK204qDThhDG3xlw1LZ1NP5BF/0T0V2rXSAUXo7Oh5FjvLUjXWxV2BqXFF92qXEnqvpMW/rSVGsXJ9j6YV2g2eCH57CKs8ZRVY6Xx8ASdNSRia9aqwbbLhTl7p9H3IZAFdMVTJlh8+I5EsXD1Gn7WtmTxB66LNIZPFZrPTdO8s9mttSO5W0SziiG7MdbZXyW0yKGTyfP/7ZhTpwNXr7rO2uYQBldCNii02B8m7pzDUvIeWjepV2KYqCu2UNCg8FTJ51vwwlyROoPQdd9a2eRE3816T0I2Ki21O9u/fTYbWkPrdR1TYZtBUbFINae3yL9alstjWg8ibp1RYewGQQkMNoWLIK7bRO+UFlke9QMPYigpcE7DLdDex60IXif3zsm/oLA5C3/vO+m00RQm5eVZXDJVgtRbTaONbHFST6Dbk1rO2X2n9jscyXwyZPL9+/wUtZBrFfR8++6IpyU8UotFNsc3Jv1bn81jiVNoPvuOs7VIJ7cL8qkVTaCsPUdznobN+G9XgHhWH6uGXX1RM8uZJpKuNSLr47N9GU0RI6zFMW32Id4uGkXrrzxUWesF93Qy0vsuxLuOr2Duw5BbayPjlA4a2jKBzk7iztssQr9st/fp/9GM7zl5jz7puDJqKCTvSYQmJLKfyLSSn/JtcpQ4NBpw9EB0g13NL2j9DmtdKVwyVsGneRJrIkxQMfKHU5bE8TmEI2cMvu9DG0ymJvFT/HTpfetdZ2832PJYanyF2f2jMJYsWLyI7v5C/jehRur5RHqmEzrXu1OnTdNj5NqmGZNpcdu9Z25UQr7+snvc2rUjFcskLCM101vZr7N/xbNqDIZElLfM0f/zyLZd2SKRX6yZnbTeoCidJCFllsF/nvc3z8lNebXek0u1SUVFxhaREbWpmDt12vcUpQyMaX3r2WqE7g7KKK0QDiv8u20aeNGEd8DSYzo4raSnT6JP7A4SwBoyuGM5gf0YBi/cWsTZqMF0uvr7yToqGFiJzyVsLfqbA6uDW629EKGefLkURtFdSUYqCX9d4784tXJMynk8bLaJvcuWZJ9MMyaSYelW6LZBIKdky4wkayVOIke+cNSIGdxAXhGbGsCU1h3f31WVVwvUkDby90j51ZTZJtr1Bl0VKydYZTzFDvMJrA8yV9jGoCuPUJcQe+THo8mzZsYNBh//DwajuNBl49ogYYKn5Sl5qMiXosrhckvUznqGdSEUMfwMqUeAG1Z0iPRQL86v3n2LG+gxW9fmQxEEPVNpHitDXh9AVQzlsDhdPzE9hieEykh+YW+mDGMClaCjIoFd4WrdkGi8dvJ1JvfPo0KjyxWXNEJravRaLBceX9+MQGt1vfbnKfitjhvNW3HNBlQVg/sY0XswYzKqOL9C02+BK+6iqgd+cXSiOOnvEHEiKrXb+NnczudFt6HLv2fbzEqRi8Fw3wTUn/fjdl1yRv5B9zW+kUasulfbRVMFY7XviUpcHVZaCYiv2L8djEC4ajPoUqrinCgwJHFaTq/ztAsW0VQeIyD3AoabXUrfnNZX2KcndFOwBRW6hld1z/s5FdQt4clj7Kn8bGYZKhH4pBiFEghDiRyHEPs//OlX0G+3ps08IMbpcu1EIMUUIsVcIsVsIcUNl+4eKdVMepsWxJfzz2i4kxlQ+0gKQpYXUgze1O7xrA53XPcthQyuuuvLaKvuVhu8H8aKRUrJuyoN0dO4m9cJ/ENegRZV9NUUJunvorv0HeGnRVpq3bMuAm/5WtSyqwl32v5ORVPkDIBBIKVn98SM8kvcWb93QqayAUmWUzGqCmCxux66d9Fr3OCcNTWhzxztV9jMo7hK1wbyGpZT8OuVJ+rhSOHnhK0Q1rDoivpXrMEPyvoIgxlVsOJzFxKV7Wdj6dZJGf1xlP4MqmOscTE69nlX28ReXS/LLJ08y1jmPSd1OEmGs2h1Vir+YYgCeBX6SUrYBfvK8r4AQIgF4CegH9AVeKqdAngcypJRtgY7Ar37K4zPrF33IgIzZ3N4siyu7Nqq275bYS3gu4iVQglMZLDfrFNq8OykWEcSPmYdmrFpJaSVT4SAuTK1e+D4XZ33Jpsa30+nye6rte0XBV0w/fUfQ5MnKzsI0+xreNn7M+7f3RFGqHmFqpW6HwbNb//zlx1yaNYfWTRpwYdvqS5rKkuslSDd4Vl4BYt4ozMJO1Oh5KOaYKvsaNHee/2DOND9ccYBJ6d1Z1/IRki6vfpG7i2Mbo3M+BFtwEtdlZOdxZOb99I7L462buyMMVd9TBlXhX447ON5keFBkAfhm3qdcmzOTA42vpsllj1Tb16aYyVdiQYbOccFfxXANMMPzegZQ2dB2GPCjlDJLSpkN/Ahc4dl2D/A6gJTSJaUMnV9hOfanrKLL5hfZYexK73Hv1dg/x9yMNWrPCsFUgcLpcHD4k9to4Mogc/gUEptU7/euqiornZ0pjKhemfnKhsNZvLrRzK/RI+h+T82/jRkbCTInKA8/h8PJvo/vooUrjbaX30e96LPtw+XRFIWlxmdonlL1yNkftqxfTf9tL7Lf3IlOYz+qsX+2oQEpWtegLLA6XZIJ87Yz3zGQU5e+R2yzTtX21xR3idpgKYbVW3by1rLddOvakz6jXqt5hyAqTZvDxcYp47nBtYy3L3JVP6vD/dsouIKWY2vVmtUM3fUCqRHtaTmmatNjCb9GXsaDTRZATOhqqfurGBpIKU8AeP4nVtKnCZBa7n0a0EQIUZLw5zUhxCYhxHwhRAM/5ak12ZkniPrqbnJFLI3Gzimz2VdDovMk/W2rwV4ccHneXr6XX/KbsqnTs7TvN6zG/gZNYZT9OY42uzrgspw8ncX4zzdiq9Oa7g/NRNG8mCEFsQb1b9Ofo59lJds7/o1WF4yssb+qCBJFNqolO+CyHDtxjLpLxlCsRNHo3nmlkcTVsSV2MM9E/7NSzxN/efe7Tazcf5q2V/2NFgNurrG/wWNHD8Z5OpqWRvNF1/JO7FzeuKFrhUj9Kim5boKgqJbMnMTw4sUcaHMPjQdU7hhQHqMm+Nn4BJ3W/z3gsuzPKMCy9GWcipH64+YhDBE17qMpAuefLY5BCLFcCLG9kj9vDbeVXRUS0ICmwGopZU9gDVBl9I8Q4j4hxAYhxIbMzEwvv7p6HE4XC2d/RILMIe+a6SQ0aFrzTkC7ok38yzYp4IFTS1NS+WDFIdJ7PE7fm57yap+ytA+BvXCsVguZk6/mCdtkPh7Vu8ZRVplAJbWEA3uDr146h0FpH7O1zmV0u/kFr/ZxLyIGflRssTv595zviMSC9frpRNX17rrRFCUocQyrln/NmPVX81ynbG7r29w7WVSFm2wvsbpHYAPuCoutZHx2Jw04Tf+r76/Wdl6eYC2wLv/xO0YceZODsX1odeubXu2jKQpOlIBfN/kWO/fN2sCr2iPYbl+IuW7Va3Xl6WDfyWOnXoHctIDKUx01KgYp5aVSys6V/H0NnBRCNALw/M+o5CPSgGbl3jcFjgOngSLgK0/7fKDK1R4p5RQpZW8pZe/69QNTHnHi97t5Lb0fy4d+S5sel3i/Y+nDL3BTzcO7NtBx4VBubpTOK9d08m6Uhdse+r3xGdrs/iBgskgp2TDlITrbt9G+7+W0a1i1rfqsfYNwg28/lsu7qzLZYu5Nh/s/89pzRVMUHCjIAMoipeTZL7fyVWZjtt34G427DPJ6316FvzKj4H7IOx4weXbt2U37lY9QrMVx93VXer2fQRUUYcZCzTNkb5FSsmrKo/R2bOZwv1do0GlgzTt5KMkSHMjrZtPRbIwrJ5Kn1aX5vXO9Nv1qqgi4mc3lksyc9j4Zp7N5846LSGzTu+adPNSV2fS1/g6W3Jo7Bwh/TUnfACVeRqOBryvp8wNwuRCijmfR+XLgB+mu0P4tMMjTbygQsmT1a5dMY+3qn7j7wiSuvLh/zTuURw2sPbRksTlSWHnqxiGYNO8TZqmKoJHIwmAJXD2G3798n4tOL2BDo1vpPvL+mncoR5a5Bd+LgWW/kZ9kFVi4f9ZGUqM60fyRJRjM3pthNEXgkIEtAPPzl1NI3PYxT1zahkGdk2q1bwRWmsr0gHneZGbnIufeQYSwEnHXFxijK3UKrBSDonC7+hNtDn0eEFkAls37iGHZc9nV+AbaDn+4VvvuiB3IrZFTIN67GU9NnMyz8MCsjfwz6llMY75Gi6lX804ejKriMbMF7rr5dt4nPJTxMrM7rKFfy7o171COYDstVIa/q6cTgXlCiLHAUeAmACFEb+ABKeU4KWWWEOI1YL1nn1ellCVPsWeAWUKI/wCZQMUMcUFi35aVdFv3NK/FdqPTlT5kSQ2gu6rT6eTwJ7fRwZXBwSvn0r6GxeYz0RSPd0mALprt636h97ZX2BXRnZ5j36/1/kfi+vC+aMLwCO8fUlXhcDjZ+8GN3FlUl4vue7fGxeYz0VTBclcPusV2JBCPm03rVtF/2wskxbSm5SVJtf+AAA4obHYn26aMZYjcz5HLPqFFi8rjFapCUwVXKOtIPgFu50D/+Hn3SWam5NM44SI631PzQvyZuLQo0mT9gAwoLHYncz+ZiNPanffGDiW2FjNecJvZHCgBu6dWrlnNkF0vkhbRjq63vFzr/WUQ11+qwq8Zg5TytJRyqJSyjed/lqd9g5RyXLl+06SUrT1/08u1H5FSXiyl7OrZ/6g/8njDqfRUYheNJkfE03zsTAxq7X+C0mlvAE7U2ulP0a14HVs6PUv7vpfXen9NDZx3ybGcYj5cupFUtSlN75vr3WLzFuyoqQAAG/BJREFUWfKIgNWfXjH9BS4oXslFnVrRtVxxIq9lURRedtzNrhZ3+i1LWloaid+Nociz2Cw0H0wwAbxuXvl2G+n5Dva0G0+Li2pebD4Tg6pgQ0MEYPH5QEYeE+ZsIbfRhbSZ8G2l6UBqooHjGHfY5kN+ul+ySCn5evobTMh/h9nddtTKDFqCQRUsdA7kYP2hNXeugb1HT9B46b24FAP1752PMNY+BclfTjH81bBZLWROvYVYmU/BdTNISPQtIjY9rhs321+Cev6VsPx+6zFyjmxjQ53hXi82n4laai7x76Iptjm5b+YGVjq7IB74jZgE39xfO+f+ylpGQaZ/qR9W/TCPwWkfsj1+KF29XGw+k5I4BqefkcaFxRYyPruDRLKw3ziTSC8Xm89EBMgk8Pmaw8xed4zUARNpd+vrPn2GQVVwoKH4ed3kFVtJn3ID9ylf8/Go3pgNvtUNaOA4xnjn//xeYF38/bdce+zfHInrS/trn/HpMwyqwkznMLY39C8wMqfIxr4ZD5EkTuC8YTomLxebz8ShRZEuEitN+xIszivF8MPMiXSw72BHn3/SuttFNe9QBXZTHdY52yGNvrsd7knP54kF2/i04Ut0eWC6z6kADKpghas7mdHta+5cBVJK1n50PxdmzOHd27rTKtH32g6qgEhh9cvMtmf3djr9/jjHDC1oV4vF5jPRFMFMw+sM2PyEz7JIKZny+Wy62VM41O8fNKrFguqZFJvq87PsBcYonz9j266ddPj+Ju5MLuDJy9v5/NuoHhOkPxlNXS7Jio+f4CLHOkb2aUuT+JpdL6uiVGn6cd1s3LGbPmsfJc9Qn2a1WGw+E00RRGBBseb7LIvTJXlkzmbetlzF0YFvkdD5Up8/60hkJ26P/gSa9fX5M2rLeaMY7E4X3xquYF7bt+k98j6/PivGkcP1ym84cnwrSJOXl03qJ7fRxniaj0b1xmTy/YZSFcGLjjFsblKzf3ZV/L7wAwZlz2dEC8mQ9n6Gkqj+pbrOLrQx7ctvcQmN6NFzMUT4rqQ0VSFSWDHa82ruXAVTVx3i3QMNWdBvAe2G+5eiOiOuCw84noK6rXzaPys3H2XeXXRQjvLMiM6lrsq+4hIawo98X99/OZ2rc2axv9FVJA/3s2qf5t+6XUa+hcIFDxEvCokcNQclunYLvOVRFcFHxne5ZpvvmXCnL/6FlfsyGXfNUJKHjvX5c8CtqFwhjmMIfOjunxSDqjD5rn5I+vn9WXVtx3jbOBlr+mCoUzuzgnS52DdlNIMdq2g27P6zqsPVFoMn8ZavcQx7t62nx9ZX2W3uSrcxNUc210RJ7ian017ri8vlkjwxP4VVRd25894/6NLMv2huTRF+eZds37qJ1Ut/YFiny7h5uP8ZYw2K8LkqmMsl2fDJw1wu93Fk6Me0qCGy2Rue42Fu7dICXwx1mzdv4OLtz5FqbksrL6J3a0TzPRmk0yWZMGcLGY67mHFVPE1b9PBLFCEELlSEy7d6DGs3b+GGjaNIbnoNQ/vWHIhZE/Uc6bxZ/DocNkDSgJp3CADnzYwB3Cmq/R1lAQjPoqwvIfNr502iV8GvbGj9CO0uvMpvWRRFMM0wiRE7a28uyc3NwbBwDBZhpuE9s31abD4TobpvcKe99jf4Lws+IGbvQv5vZAe6JPmf4kNTBHapovigGLJycjF+NYZ3DB8y6aqWXseVVEejoj2sM47HeWBFrff9fv7HXF6wiF1Jo2gx8OziUb6gqapPCQ8z8618tfhr7IqJhLHzfFpQPROhluT8qv09Ne3bn1lz8BTjrx1K076BSZjoFCqKrP01nJ6VT+TX4zAKFxfd+FhAZDELO31cKX4vzNeG80oxBApfH357U1bTc9ebbI3oS5/bXw6YPNHCisleO3uolJKZ/5tFE9dxTg37gPgGgfEft0Q2YrZjKPaIyus1VMX2lPX03/EqD8X9zqh+zWrewQtUz4xB1PIGd7kkKZ+Op608TM6w94iLr92xVIWmQH2Ri9NSu0Rxq/adImL7HI6YO9D+zn8HRBaA4WINw46+Xat9nC7JhLmb+cJ6IZn3/EFUYmBqWOdEt6a75WNcrS6r1X6/b0rhxk13MaPpt9zYyzengMpwm9lqN6CwO12snfoYXdhH3rB3MDdsGxBZyrI5h84r6bwxJQUSxTPtddUiUCm32E76N69QR8TS/J6ZKGrgPAwcQkNx1W6kNXXVIf59pCX1L13Mrf0vDJgsBTHJvOIYy/A47+3o2Tm5mBeNxSZMNLpnFiJA3hdCCFbJbhjjTdQm/dhP89/nsoIlbE++h879rwuILECpG6ezFtdNRp6FCXM3k1jnRb4c09EnV9Cq6Cr20Su7dvUYFs+fSuSh47x23Rja+WnqK49qMJJDDHah4u0RHjudR9Q34zAJJxfcWHX6dV9w+lBqdOG86dxSuIBDSbeQ3D8wszooX3NFr+D2p0YpNSV5p8FL0ig8WDyejGvnEl8/sJlQHUJD1OIi3rNtHauXfsEVnRpyy9BaRn3XgKYqCFw4HN7J43JJtnz6IK3lEbKHvU9M/cDMXEr4nBH81tj7xb+U7du4cOdr7I/oQqc7JwVUlpKHusvmne1aSsnizyZisGXx3zv7ElknsNeNS9SuPveGLSkM2vkCL8Yu4aaegZUl0lXAU9pcXKkbvOrvdEk2THucbuylYNjbmBq2C6g8K9SL+C3hJq/7/7I7g6+3nWJfdB+S73g3oLKUVCIMZh2PM9EVgw/YIhsxwvovClt454L24/cL+XX7YSZc0Y1O3f1f/D4TBxqql9Pe4qJCDF+N403DZN64pnVAbOflSSg6xCHznWi7K8uOcjbfLl3C4ILFbEu+h+T+gS+oY1AVHF56dORb7Dy0OIMPTWNpOGZ2pTWt/aG2a1O/fjODe7Le4eO2G2mdWPtArZpwKQY0afcqDXhufhGmr8ehCUn9MZ+XBXkGCBN2HtK+geMpXvVf+s3/uKZwAQda3EJif9898qpijbEfv9WporTvGZwusPLUgq1kJfan2YQfwIuMqbVCM7PH1QxMcYH93GrQFYMPqEYTO2USNmPNJyptXwoD1o7nw7rzGDcwMPbYM9modGVnjHcj/02fPUlL1xFODv43cbGBv9BKCqBIe83mkn0n83nqd5V3GrxO5zveCLgsAP8QH/Hg1hu96jvxm40cz7Uw5I6niU70LRipOlymWL52Xog9pubAysNHDtNl0wscNrSm621e1DPwASlKAu5qdlld99mTdJF7OTX4TSIa+BfYWRkl5lmnF+aSXSfymLPhBDsjetHyjv8EXBaAeKWYaEvNyQ6llKyc9nfuss7hnZu7+hzgVy2mOIbZ3sDZ2bvrOBDoisEHjNLBKHUZ6slt1fZz2G0UfzEOmzDQ8fY3Aj46L+Eb80i+rTeuxn4pq5bQ/+QcNtS7lk6XBOciUzyKwemo3lxidzh4c84Sok0ad9451rcUE94gFDRXzUrqj5XLeHLHDfyjZx69Wvif56kypCmeCfaHKWpcfXClw+Ekffb9RItiom+bGtB1hfLYFDNFIrJGE8WKVb8x5NT/2NHgalpcMioosiglZjZ79YrB6nDy+Bdb2G3uTsOHlwbEI6oybrd/xcuH7qix388//8DI09MZ3riQDo2CM6I3au7HtM3x16ngdl5iEHZeM3yGKXVltf02zn6BNo697OvzKolNkoImj1lTsdirH/Xl5mRTf/ljnFAa0DkA8QpVUXKDS3v1imHV5//gv9kP8d4QI/VjgvPgA7Ar5hoVw6nsbBr+NAG7EsGNw6+otq8/lOTlqsm09dO8/3KB7Q8OdPkb9Vp2D5o8S6Jv4P6mi6o1fZzMszBheTHvxD5Nu9G1T6roLYrBO4eOJXMnM+LUVN68vj0JUUEaTAAOxYiKq9oStcdOZZH829/IVRNoOfoj/2M5qsCoChYaX4QN04Ly+ZWhKwYfKPESqC6698DWVfQ89AnrY4bQe0T1dZL95RHbJ0w8eEO1fV78/hCTHSOxjPwQc1TwbJUllcyqMyXt3LqeCw+9z76Yvgy48OKgyQLgVM0YqwlUklKydfpjJHEc68j3a5W6urYYhJMdpjHErK9aMaek5vDC9gb8UG80Ha87q4R6YOVRRbWBkVJKXvliFVani+vuehQtMnjXjepZf5HVrL9s3rGbwfv+xXUxexjcLrhlLp2KZ7BSxczX5ZJsmf4ELcUxnFe/jxoZvOvGaFDpII7iyjoUtO84E10x+IDiiWOo6iK22J28+uNxflP60Gb05KCZkEpwKSYiXFX7xn+7JZWvU05Qb/CDtOrlf8bI6lAMZqY4rqSgbuVpoIuLLSiLHqBIRNBizKdBG2WV4FDNGLBXOfL7bek8huQtYlvT22nWK3izBQBVNRCBDVlFSdhiq50n5m5EjUnkgrH/BiW4t2c3+1YeyfoHFFVey+PnxXN4M+123u5vpVX9wJcjLY+mqrSzfMapXpUHheUX27B8OZ4IYaPuqOlBqbdenjLFUPkAZ+5Pf3BpwTfsa3ELid2HB1UWoyoowoS0FgT1e8qjKwYf0AwaTimQVbirvvPjXn7NjEK5dRbx9YJfxtqhRWDEVunD7+SJNLosuoxxiXt4cJBvOXpqg6YZ+JfjDnIaXFDp9j9mPEd7135OXvw6MXV9y25bGw6aOrIk6nqQZ9tnU7OK2PfHd6Rpzek0KnCBY1Vh0BSsGKqsFf7rzFeYmP8s/7mmpfelVP2ggczgQstKsJ39wDmSdozOG54j29CQKy6tufa4vxhUgRUjdlflA4Vls96gv2sTGf2eI7Jxh6DL41SrnjHsPZnPy7/mMLHJf2l9e+0CBH3BqCkUSTPSVrvASH/QFYMPRBo17GiVuh3uWvM9Pdc8zNhecQxulxgSeZyqJ1unveKFI10uUmfeR2OZyegRA9F8qD1RW0yaghkrjqKzyxCu3JfJ1rQsttQdQfsh/tdI8Ia90X34NGpcWS4eDy6X5Mn5KfyH22HschRTcBYxy2NQFfKJhEqydq5ft5rBaZOJrZNIvw5JQZcFAKXy+twOp4vDsx4kQeRhvvlTFGOA3S8rQVUUHlIXEbtz9lnbfko5wNBjH3E4ri/Nh/mZrM9LDpk7MSX6ATBVdBO2OVz8Z/YiYkwaD952A8IU3JkUgFFVKcQMumL4cxNt0rjMNokdLSsWnCvIyyZu2aN01lL52xWdQyaPw+B5qJ1x4fy+8AN6F69mW/tHaNa+T0hkiTZr/Gx6gqbrXq3Qnltk56n5W/mmzt20v39WSGQBiNBA2orOcsn84evPyT+8iRev6kjTRsGf1QFEmTTyZQTyjNq92XkFxHz3EMVKBM3vDr55rQRZRe3y5Qsmc4l1Bfvbj6de29CkejYbFK5U1xJ1pGIk9qkCK09/c5AX4l6n8V1Tg25eKyHDnMzXxpFgrpjdd8mCaXyY9zCf9ksPqtNEeUyawhZXK4pjAu9CXRW6YvCBGLNGqmxAtqw4Wtgx/REaujLJv+J9omJqX3HMVzIj2/CFehWoZRfqkYN76Lrtn+wxdaHnzf8XMllizQZyZTSiOKdC+8rpf6dN4UbeuaU7ZmPoMrH0s/7OopwbIWNXaduB/Xvpv+UZ3o37Hzf1DL45q4S4CI2vnAM4kVAW5CilZM1nz9KeQ+QOfQtzgKObq8OhegYU5WYw24/lcmD7Wg6b29PhppdDJktchIF8IpCWMlmklLw19wfyrQ4eveN6jHUDGxVfHRGKgya2gxXWX1L2HmDArlc5Zm5NjyG3hEyWGLPGs4772NvFt2JevqArBh+INmlcpfxOk0NflralLJ9Dv+xvWdf4Ttr3q32JTn/IjOvCRHkXRLlz0DucLpZ/OQVFSOre8WnAo1SrI8askUsUirVsVPzH8oWMzPyEJ5vv8alEpz/YTZ7vKzoFuGslZ8+9H7OwU/f2TxAhGoECxJgNvO+8ju2NyvIvfbvxMG1P/cTuBlfSYkDoHjYARaZ6ZIqE0gVWi90dIzDDPIr4B38MSP1lb4mLMFAozQhbmWJY9tOPvJp6N9M6b6dNg8BHfldHQ+cJphQ8Cgd+BqDIaif3C3e9h/jbp55lmgwmdTxuuTnFeq6kPzWRRpXr1FV0SP0CgMw8CxGrXueAkkyP0YHNr+MN9aJNFBUVYity31Tv/bSP104PYc0V31Gvue+V3XwhyqSRI6Mx2LIBOJF+nORVT5CmNqXj6MDmkPEGJdY9I3DlnQDg189fo7djE4d6PEtC844hlSXW7H7QWvPdv01qVhHPL97LSw0/oM3dH4VUFoCCOp0Y4poMye6qdItnv0dU5hYm3diV+FjfCyT5QlyEgdMyFqMlE4DDJzJpvXIChWocF44Mrrt3ZbgiPIV+PDOG72a9xcXONRzv9RRRzYMXW1IZ8REGxqpLGLDM/9oO3qIrBh8QQpCj1SPacgKX08WTC7Zyl+N5lFtnYjIHfxHzTJpGWNljvpviP6aydd2vLF+xnBt7NeXSC/wvLlNbDKpChpJIbPExnA47Rz+7lwSZi7jhUwzm4C/UnUlkPXcqZsupo2xY/zsXH/4vu2IvosPVgc3G6Q1mg8Jjhq+4e9UQ7DYLC6e/iRkrE2+9ADUidHlwSmgUZybf6iDfYmfN779x5aF/MSlxKYNC5DRRnhizgVQSUZw2rNZidn32MK3EcZzXTvarGpuvxNdtgEUacGQd4rttJ1h9MJd9dQbS4sqnQy5LXKQBFRfxBQfAcrZTRzDQFYOPnIppT5Qzl9VTn2TV3nQeurIfyW27hkWWenUTyZRxyE2zaPLdKD42vc8rIwObbbI27KgziDkxY1g06136WVaxs+NjNOkY2Cyu3lI/IYFDrgbk7VnB+O9y+J/5VpLHfhayBd7yCCGwxCah4OTQeyOZkP82n3XbTbOE0A8mABrFR/CENg/rlMtJWnY3RUo0Le7+NCyyqIpgSdztPNJsId9PfY3h1qUcbncv9boG31W2MhrViWK3bE7hrp94ekEKB5tcRdJDX4ds8bs8Jk0lM8Ltap62+YeQfKdfRymESBBC/CiE2Of5X2n4nxBitKfPPiHE6HLttwkhtgkhtgohlgoh6vkjTyixtR5Bnoxk4PGpTGy7jzsvCJ3HwJn0Sk7gK9clxBfsx4XAdescoiL8KxnqDzGtB/BSxsU8sac9X7SeRLebfSkeGRj6JicwzXUljx8bjFSNDL53Eua40I+IS3C2upTTMoa2BetJSbyWTteGbkHxTPolJ5BFLPWyNmHCgf2WuZjqhG4x/kx6J9dn+a6T/JimsjtxOEm3hN4sW8IFLevyhXMQcXl7uNy4ncl39sSgBSFBnpcoLQeSJuvx2nd7ycz3vp6HrwjpRcrdKncWYhKQJaWcKIR4FqgjpXzmjD4JwAagNyCBjUAvIB84DnSUUp7yfFaRlPLlmr63d+/ecsMG7/K2B4vcYjufLF5FuzgHV156KUoASob6w9Jtxzi65ReGDb2UFo2Dmy6gJnKL7LyzfC/tG8ZwS59mQY/8ronFW4/zx8HT3DewFc3rhmd0XkJWoY3pP6yhZ3wxgwYPC/tv89WmVNJ3r+WaIRfRuGHoPKIqIzPfyge/7Kdn83iu7tY4LLO68sxff5TTBzZw3eD+NGgQ3t/mZJ6FacvW0yWpEVf0aOlzTJIQYqOUsneN/fxUDHuAQVLKE0KIRsAKKWW7M/rc5ulzv+f9x8AKYAFuxdAbOAp8BGySUk6p6Xv/DIpBR0dH56+Gt4rBXz/GBlLKEwAe5VDZHL0JkFrufRrQREppF0KMB7YBhcA+4CE/5dHR0dHR8ZMa5yNCiOVCiO2V/Hlbbquy+aAUQhiA8UAPoDGwFfh7NXLcJ4TYIITYkJmZ6eVX6+jo6OjUlhpnDFLKKutXCiFOCiEalTMlZVTSLQ0YVO59U9ympO6ezz/g+ax5QJV5hj0mpingNiXVJLeOjo6Ojm/463v1DVDiZTQaqKzQ7w/A5UKIOh6vpcs9bceAjkKI+p5+lwG7KtlfR0dHRyeE+LvGMBGYJ4QYi3sB+SYAIURv4AEp5TgpZZYQ4jVgvWefV6WUWZ5+rwC/CSHswBHgbj/l0dHR0dHxE7+8ksKF7pWko6OjU3u89UrSI591dHR0dCqgKwYdHR0dnQr8JU1JQohM3GsSvlAPOBVAcf4K6Md8fqAf8/mBr8d8CkBKWWNx87+kYvAHIcQGb2xs5xL6MZ8f6Md8fhCKY9ZNSTo6Ojo6FdAVg46Ojo5OBc5HxVBjkr5zEP2Yzw/0Yz4/CPoxn3drDDo6Ojo61XM+zhh0dHR0dKrhnFMMQohpQogMIcT2cm2VVpoTbt4TQuz3VJHrGT7JfaOK431TCLHbc0xfCSHiy237u+d49wghwlM30U8qO+Zy254UQsiSaoDnwjmGqo9ZCPGI51zu8BS7Kmk/J8+zEKK7EOIPIcQWT7blvp72c+U8NxNC/CKE2OU5pxM87aF9hkkpz6k/4GKgJ7C9XNsk4FnP62eBNzyvRwDf404NfgGwNtzyB+h4Lwc0z+s3yh1vRyAFMAHJwAFADfcxBOKYPe3NcCdoPALUO1fOcTXneTCwHDB53iee6+cZWAYML3duV5xj57kR0NPzOgbY6zmfIX2GnXMzBinlb0DWGc3XADM8r2cA15Zrnynd/AHEe9KH/2Wo7HillMuklA7P2z9wpzoH9/HOlVJapZSHgP1A35AJGyCqOMcA7wBP4y4hW8Jf/hxDlcc8HpgopbR6+pSkvT+Xz7MEYj2v43BXgYRz5zyfkFJu8rzOx51xugkhfoadc4qhCipUmgNKKs1VWl0uxLIFm3twjyjgHD5eIcTVwDEpZcoZm87ZYwbaAgOFEGuFEL8KIfp42s/lY34MeFMIkQq8RVlxr3PumIUQSbgLma0lxM+w80UxVEWl1eVCLkWQEEI8DziA2SVNlXT7yx+vECISeB54sbLNlbT95Y/ZgwbUwW1CeAp3CnzBuX3M44HHpZTNgMeBqZ72c+qYhRDRwJfAY1LKvOq6VtLm93GfL4rhZMn06oxKc2m47dIlNKVsavqXRggxGhgJ3CE9xkjO3eNthduWniKEOIz7uDYJIRpy7h4zuI9toceMsA5w4c6jcy4f82hgoef1fMpMZOfMMQt32eMvgdlSypJjDekz7HxRDFVVmvsGuMuzsn8BkFsyXfsrI4S4AngGuFpKWVRu0zfArUIIkxAiGWgDrAuHjIFESrlNSpkopUySUibhvll6SinTOUfPsYdFwBAAIURbwIg7Udo5eZ49HAcu8bweAuzzvD4nzrNnxjcV2CWlfLvcptA+w8K9Ch/oP2AOcAKw435AjAXqAj/hvoh+AhI8fQXwAW6vjW1A73DLH6Dj3Y/b7rjF8ze5XP/nPce7B493x1/tr7JjPmP7Ycq8kv7y57ia82wEPge2A5uAIef6eQYGABtxe12tBXqdY+d5AG5T0NZy9++IUD/D9MhnHR0dHZ0KnC+mJB0dHR0dL9EVg46Ojo5OBXTFoKOjo6NTAV0x6Ojo6OhUQFcMOjo6OjoV0BWDjo6Ojk4FdMWgo6Ojo1MBXTHo6Ojo6FTg/wEnYUZ4OOCvegAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(trace_monitor.t/ms, traces[1,:], label=\"fit\")\n", "plt.plot(trace_monitor.t/ms, output_traces[1,:], linestyle= '--', label=\"data\")\n", "plt.legend()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }