function [dz,vdz,Adz]=two_group_test_spectrum(J1,J2,p,plt,f) % function [dz,vdz,Adz]=two_group_test_spectrum(J1,J2,p,plt,f) % Test the null hypothesis (H0) that data sets J1, J2 in % two conditions c1,c2 have equal population spectrum % % Usage: % [dz,vdz,Adz]=two_sample_test_spectrum(J1,J2,p) % % Inputs: % J1 tapered fourier transform in condition 1 % J2 tapered fourier transform in condition 2 % p p value for test (default: 0.05) % plt 'y' for plot and 'n' for no plot % f frequencies (useful for plotting) % % % Dimensions: J1: frequencies x number of samples in condition 1 % J2: frequencies x number of samples in condition 2 % number of samples = number of trials x number of tapers % Outputs: % dz test statistic (will be distributed as N(0,1) under H0 % vdz Arvesen estimate of the variance of dz % Adz 1/0 for accept/reject null hypothesis of equal population % coherences based dz ~ N(0,1) % % % Note: all outputs are functions of frequency % % References: Arvesen, Jackkknifing U-statistics, Annals of Mathematical % Statisitics, vol 40, no. 6, pg 2076-2100 (1969) if nargin < 2; error('Need four sets of Fourier transforms'); end; if nargin < 4 || isempty(plt); plt='n'; end; % % Test for matching dimensionalities % m1=size(J1,2); % number of samples, condition 1 m2=size(J2,2); % number of samples, condition 2 dof1=m1; % degrees of freedom, condition 1 dof2=m2; % degrees of freedom, condition 2 if nargin < 5 || isempty(f); f=size(J1,1); end; if nargin < 3 || isempty(p); p=0.05; end; % set the default p value % % Compute the individual condition spectra, coherences % S1=conj(J1).*J1; % spectrum, condition 1 S2=conj(J2).*J2; % spectrum, condition 2 Sm1=squeeze(mean(S1,2)); % mean spectrum, condition 1 Sm2=squeeze(mean(S2,2)); % mean spectrum, condition 2 % % Compute the statistic dz, and the probability of observing the value dz % given an N(0,1) distribution i.e. under the null hypothesis % bias1=psi(dof1)-log(dof1); bias2=psi(dof2)-log(dof2); % bias from Thomson & Chave var1=psi(1,dof1); var2=psi(1,dof2); % variance from Thomson & Chave z1=log(Sm1)-bias1; % Bias-corrected Fisher z, condition 1 z2=log(Sm2)-bias2; % Bias-corrected Fisher z, condition 2 dz=(z1-z2)/sqrt(var1+var2); % z statistic % Bug fix % pdz=normpdf(dz,0,1); % probability of observing value dz pdz = 2*normcdf(-abs(dz),0,1); % probability of observing value dz % % The remaining portion of the program computes Jackknife estimates of the mean (mdz) and variance (vdz) of dz % samples1=[1:m1]; samples2=[1:m2]; % % Leave one out of one sample % bias11=psi(dof1-1)-log(dof1-1); var11=psi(1,dof1-1); for i=1:m1; ikeep=setdiff(samples1,i); % all samples except i Sm1=squeeze(mean(S1(:,ikeep),2)); % 1 drop mean spectrum, data 1, condition 1 z1i(:,i)=log(Sm1)-bias11; % 1 drop, bias-corrected Fisher z, condition 1 dz1i(:,i)=(z1i(:,i)-z2)/sqrt(var11+var2); % 1 drop, z statistic, condition 1 ps1(:,i)=m1*dz-(m1-1)*dz1i(:,i); end; ps1m=mean(ps1,2); bias21=psi(dof2-1)-log(dof2-1); var21=psi(1,dof2-1); for j=1:m2; jkeep=setdiff(samples2,j); % all samples except j Sm2=squeeze(mean(S2(:,jkeep),2)); % 1 drop mean spectrum, data 2, condition 2 z2j(:,j)=log(Sm2)-bias21; % 1 drop, bias-corrected Fisher z, condition 2 dz2j(:,j)=(z1-z2j(:,j))/sqrt(var1+var21); % 1 drop, z statistic, condition 2 ps2(:,j)=m2*dz-(m2-1)*dz2j(:,j); end; % % Leave one out, both samples % and pseudo values % for i=1:m1; % for j=1:m2; % dzij(:,i,j)=(z1i(:,i)-z2j(:,j))/sqrt(var11+var21); % dzpseudoval(:,i,j)=m1*m2*dz-(m1-1)*m2*dz1i(:,i)-m1*(m2-1)*dz2j(:,j)+(m1-1)*(m2-1)*dzij(:,i,j); % end; % end; % % Jackknife mean and variance % % dzah=sum(sum(dzpseudoval,3),2)/(m1*m2); ps2m=mean(ps2,2); % dzar=(sum(ps1,2)+sum(ps2,2))/(m1+m2); vdz=sum((ps1-ps1m(:,ones(1,m1))).*(ps1-ps1m(:,ones(1,m1))),2)/(m1*(m1-1))+sum((ps2-ps2m(:,ones(1,m2))).*(ps2-ps2m(:,ones(1,m2))),2)/(m2*(m2-1)); % vdzah=sum(sum((dzpseudoval-dzah(:,ones(1,m1),ones(1,m2))).*(dzpseudoval-dzah(:,ones(1,m1),ones(1,m2))),3),2)/(m1*m2); % % Test whether H0 is accepted at the specified p value % Adz=zeros(size(dz)); x=norminv([p/2 1-p/2],0,1); indx=find(dz>=x(1) & dz<=x(2)); Adz(indx)=1; % Adzar=zeros(size(dzar)); % indx=find(dzar>=x(1) & dzar<=x(2)); % Adzar(indx)=1; % % Adzah=zeros(size(dzah)); % indx=find(dzah>=x(1) & dzah<=x(2)); % Adzah(indx)=1; if strcmp(plt,'y'); if isempty(f) || nargin < 5; f=linspace(0,1,length(dz)); end; % % Compute the coherences % S1=squeeze(mean(conj(J1).*J1,2)); S2=squeeze(mean(conj(J2).*J2,2)); % % Plot the coherence % subplot(311); plot(f,S1,f,S2); legend('Data 1','Data 2'); set(gca,'FontName','Times New Roman','Fontsize', 16); ylabel('Spectra'); title('Two group test for spectrum'); subplot(312); plot(f,dz); set(gca,'FontName','Times New Roman','Fontsize', 16); ylabel('Test statistic'); conf=norminv(1-p/2,0,1); line(get(gca,'xlim'),[conf conf]); line(get(gca,'xlim'),[-conf -conf]); subplot(313); plot(f,vdz); set(gca,'FontName','Times New Roman','Fontsize', 16); xlabel('frequency'); ylabel('Jackknifed variance'); end;