function [dz,vdz,Adz]=two_group_test_coherence(J1c1,J2c1,J1c2,J2c2,p,plt,f) % function [dz,vdz,Adz]=two_group_test_coherence(J1c1,J2c1,J1c2,J2c2,p,plt,f) % Test the null hypothesis (H0) that data sets J1c1,J2c1,J1c2,J2c2 in % two conditions c1,c2 have equal population coherence % % Usage: % [dz,vdz,Adz]=two_sample_test_coherence(J1c1,J2c1,J1c2,J2c2,p) % % Inputs: % J1c1 tapered fourier transform of dataset 1 in condition 1 % J2c1 tapered fourier transform of dataset 1 in condition 1 % J1c2 tapered fourier transform of dataset 1 in condition 2 % J2c2 tapered fourier transform of dataset 1 in condition 2 % p p value for test (default: 0.05) % plt 'y' for plot and 'n' for no plot % f frequencies (useful for plotting) % % % Dimensions: J1c1,J2c2: frequencies x number of samples in condition 1 % J1c2,J2c2: frequencies x number of samples in condition 2 % number of samples = number of trials x number of tapers % Outputs: % dz test statistic (will be distributed as N(0,1) under H0 % vdz Arvesen estimate of the variance of dz % Adz 1/0 for accept/reject null hypothesis of equal population % coherences based dz ~ N(0,1) % % Note: all outputs are functions of frequency % % References: Arvesen, Jackkknifing U-statistics, Annals of Mathematical % Statisitics, vol 40, no. 6, pg 2076-2100 (1969) if nargin < 4; error('Need four sets of Fourier transforms'); end; if nargin < 6 || isempty(plt); plt='n'; end; % % Test for matching dimensionalities % if size(J1c1)~=size(J2c1) | size(J1c2)~=size(J2c2) | size(J1c1,1)~=size(J1c2,1); error('Need matching dimensionalities for the Fourier transforms: Check the help file for correct dimensionalities'); else; m1=size(J1c1,2); % number of samples, condition 1 m2=size(J1c2,2); % number of samples, condition 2 dof1=2*m1; % number of degrees of freedom in the first condition estimates dof2=2*m2; % number of degrees of freedom in the second condition estimates end; if nargin < 7 || isempty(f); f=size(J1c1,1); end; if nargin < 5 || isempty(p); p=0.05; end; % set the default p value % % Compute the individual condition spectra, coherences % S12c1=conj(J1c1).*J2c1; % individual sample cross-spectrum, condition 1 S12c2=conj(J1c2).*J2c2; % individual sample cross-spectrum, condition 2 S1c1=conj(J1c1).*J1c1; % individual sample spectrum, data 1, condition 1 S2c1=conj(J2c1).*J2c1; % individual sample spectrum, data 2, condition 1 S1c2=conj(J1c2).*J1c2; % individual sample spectrum, data 1, condition 2 S2c2=conj(J2c2).*J2c2; % individual sample spectrum, data 2, condition 2 Sm12c1=squeeze(mean(S12c1,2)); % mean cross spectrum, condition 1 Sm12c2=squeeze(mean(S12c2,2)); % mean cross spectrum, condition 2 Sm1c1=squeeze(mean(S1c1,2)); % mean spectrum, data 1, condition 1 Sm2c1=squeeze(mean(S2c1,2)); % mean spectrum, data 2, condition 1 Sm1c2=squeeze(mean(S1c2,2)); % mean spectrum, data 1, condition 1 Sm2c2=squeeze(mean(S2c2,2)); % mean spectrum, data 2, condition 1 Cm12c1=abs(Sm12c1./sqrt(Sm1c1.*Sm2c1)); % mean coherence, condition 1 Cm12c2=abs(Sm12c2./sqrt(Sm1c2.*Sm2c2)); % mean coherence, condition 2 Ccm12c1=Cm12c1; % mean coherence saved for output Ccm12c2=Cm12c2; % mean coherence saved for output % % Compute the statistic dz, and the probability of observing the value dz % given an N(0,1) distribution i.e. under the null hypothesis % z1=atanh(Cm12c1)-1/(dof1-2); % Bias-corrected Fisher z, condition 1 z2=atanh(Cm12c2)-1/(dof2-2); % Bias-corrected Fisher z, condition 2 dz=(z1-z2)/sqrt(1/(dof1-2)+1/(dof2-2)); % z statistic % % The remaining portion of the program computes Jackknife estimates of the mean (mdz) and variance (vdz) of dz % samples1=[1:m1]; samples2=[1:m2]; % % Leave one out of one sample % for i=1:m1; ikeep=setdiff(samples1,i); % all samples except i Sm12c1=squeeze(mean(S12c1(:,ikeep),2)); % 1 drop mean cross-spectrum, condition 1 Sm1c1=squeeze(mean(S1c1(:,ikeep),2)); % 1 drop mean spectrum, data 1, condition 1 Sm2c1=squeeze(mean(S2c1(:,ikeep),2)); % 1 drop mean spectrum, data 2, condition 1 Cm12c1(:,i)=abs(Sm12c1./sqrt(Sm1c1.*Sm2c1)); % 1 drop coherence, condition 1 z1i(:,i)=atanh(Cm12c1(:,i))-1/(dof1-4); % 1 drop, bias-corrected Fisher z, condition 1 dz1i(:,i)=(z1i(:,i)-z2)/sqrt(1/(dof1-4)+1/(dof2-2)); % 1 drop, z statistic, condition 1 ps1(:,i)=m1*dz-(m1-1)*dz1i(:,i); % ps1(:,i)=dof1*dz-(dof1-2)*dz1i(:,i); end; ps1m=mean(ps1,2); for j=1:m2; jkeep=setdiff(samples2,j); % all samples except j Sm12c2=squeeze(mean(S12c2(:,jkeep),2)); % 1 drop mean cross-spectrum, condition 2 Sm1c2=squeeze(mean(S1c2(:,jkeep),2)); % 1 drop mean spectrum, data 1, condition 2 Sm2c2=squeeze(mean(S2c2(:,jkeep),2)); % 1 drop mean spectrum, data 2, condition 2 Cm12c2(:,j)=abs(Sm12c2./sqrt(Sm1c2.*Sm2c2)); % 1 drop coherence, condition 2 z2j(:,j)=atanh(Cm12c2(:,j))-1/(dof2-4); % 1 drop, bias-corrected Fisher z, condition 2 dz2j(:,j)=(z1-z2j(:,j))/sqrt(1/(dof1-2)+1/(dof2-4)); % 1 drop, z statistic, condition 2 ps2(:,j)=m2*dz-(m2-1)*dz2j(:,j); % ps2(:,j)=dof2*dz-(dof2-2)*dz2j(:,j); end; % % Leave one out, both samples % and pseudo values % for i=1:m1; % for j=1:m2; % dzij(:,i,j)=(z1i(:,i)-z2j(:,j))/sqrt(1/(dof1-4)+1/(dof2-4)); % dzpseudoval(:,i,j)=m1*m2*dz-(m1-1)*m2*dz1i(:,i)-m1*(m2-1)*dz2j(:,j)+(m1-1)*(m2-1)*dzij(:,i,j); % % dzpseudoval(:,i,j)=dof1*dof2*dz-(dof1-2)*dof2*dz1i(:,i)-dof1*(dof2-2)*dz2j(:,j)+(dof1-2)*(dof2-2)*dzij(:,i,j); % end; % end; % dzah=sum(sum(dzpseudoval,3),2)/(m1*m2); ps2m=mean(ps2,2); % dzar=(sum(ps1,2)+sum(ps2,2))/(m1+m2); vdz=sum((ps1-ps1m(:,ones(1,m1))).*(ps1-ps1m(:,ones(1,m1))),2)/(m1*(m1-1))+sum((ps2-ps2m(:,ones(1,m2))).*(ps2-ps2m(:,ones(1,m2))),2)/(m2*(m2-1)); % vdzah=sum(sum((dzpseudoval-dzah(:,ones(1,m1),ones(1,m2))).*(dzpseudoval-dzah(:,ones(1,m1),ones(1,m2))),3),2)/(m1*m2); % % Test whether H0 is accepted at the specified p value % Adz=zeros(size(dz)); x=norminv([p/2 1-p/2],0,1); indx=find(dz>=x(1) & dz<=x(2)); Adz(indx)=1; if strcmp(plt,'y'); if isempty(f) || nargin < 6; f=linspace(0,1,length(dz)); end; % % Compute the coherences % S121=mean(conj(J1c1).*J2c1,2); S122=mean(conj(J1c2).*J2c2,2); S111=mean(conj(J1c1).*J1c1,2); S221=mean(conj(J2c1).*J2c1,2); S112=mean(conj(J1c2).*J1c2,2); S222=mean(conj(J2c2).*J2c2,2); C121=abs(S121)./sqrt(S111.*S221); C122=abs(S122)./sqrt(S112.*S222); % % Plot the coherence % subplot(311); plot(f,C121,f,C122); legend('Data 1','Data 2'); set(gca,'FontName','Times New Roman','Fontsize', 16); ylabel('Coherence'); title('Two group test for coherence'); subplot(312); plot(f,dz); set(gca,'FontName','Times New Roman','Fontsize', 16); ylabel('Test statistic'); conf=norminv(1-p/2,0,1); line(get(gca,'xlim'),[conf conf]); line(get(gca,'xlim'),[-conf -conf]); subplot(313); plot(f,vdz); set(gca,'FontName','Times New Roman','Fontsize', 16); xlabel('frequency'); ylabel('Jackknifed variance'); end; % Adzar=zeros(size(dzar)); % indx=find(dzar>=x(1) & dzar<=x(2)); % Adzar(indx)=1; % % Adzah=zeros(size(dzah)); % indx=find(dzah>=x(1) & dzah<=x(2)); % Adzah(indx)=1;