function [Sc,Cmat,Ctot,Cvec,Cent,f]=CrossSpecMatpt(data,win,T,params) % % % Multi-taper cross-spectral matrix - another routine, this one allows for multiple trials and channels % but does not do confidence intervals. Also this routine always averages % over trials - point process as times % % Usage: % % [Sc,Cmat,Ctot,Cvec,Cent,f]=CrossSpecMatpt(data,win,T,params) % Input: % Note units have to be consistent. See chronux.m for more information. % data (as a struct array with dimensions channels x trials) - note % that times of measurement have to be consistent, we assume all % times are specified relative to the start time of the trials which % are taken to be zero. % win (duration of non-overlapping window) % trialduration (since it is not possible to infer trial duration % from spike times, this is an optional argument. If not specified % the routine uses the minimum and maximum spike time (across all % channels and trials) as the window of calculation.) - % optional % params: structure with fields tapers, pad, Fs, fpass % - optional % tapers : precalculated tapers from dpss or in the one of the following % forms: % (1) A numeric vector [TW K] where TW is the % time-bandwidth product and K is the number of % tapers to be used (less than or equal to % 2TW-1). % (2) A numeric vector [W T p] where W is the % bandwidth, T is the duration of the data and p % is an integer such that 2TW-p tapers are used. In % this form there is no default i.e. to specify % the bandwidth, you have to specify T and p as % well. Note that the units of W and T have to be % consistent: if W is in Hz, T must be in seconds % and vice versa. Note that these units must also % be consistent with the units of params.Fs: W can % be in Hz if and only if params.Fs is in Hz. % The default is to use form 1 with TW=3 and K=5 % % pad (padding factor for the FFT) - optional (can take values -1,0,1,2...). % -1 corresponds to no padding, 0 corresponds to padding % to the next highest power of 2 etc. % e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT % to 512 points, if pad=1, we pad to 1024 points etc. % Defaults to 0. % Fs (sampling frequency) - optional. Default 1. % fpass (frequency band to be used in the calculation in the form % [fmin fmax])- optional. % Default all frequencies between 0 and Fs/2 % Output: % Sc (cross spectral matrix frequency x channels x channels) % Cmat Coherence matrix frequency x channels x channels % Ctot Total coherence: SV(1)^2/sum(SV^2) (frequency) % Cvec leading Eigenvector (frequency x channels) % Cent A different measure of total coherence: GM/AM of SV^2s % f (frequencies) d=ndims(data); if size(d,1)==1; error('Need multiple channels; are you sure your format is channels x trials ?');end; [C,Ntr]=size(data); mintime=0; if nargin < 3; [mintime,maxtime]=minmaxsptimes(data);clear mintime; else maxtime=T; end; if nargin < 4; params=[]; end; [tapers,pad,Fs,fpass,err,trialave,params]=getparams(params); clear err trialave params Nwin=round(Fs*win); % number of samples in window nfft=max(2^(nextpow2(Nwin)+pad),Nwin); [f,findx]=getfgrid(Fs,nfft,fpass); tapers=dpsschk(tapers,Nwin,Fs); % check tapers twin=linspace(0,win,Nwin); % times of occurrence of "samples" within window - times of evaluation of tapers Sc=zeros(length(findx),C,C); tn=mintime:win:maxtime-win; Nwins=length(tn); if d==3, % If there are multiple trials for iwin=1:Nwins, t=[tn(iwin) tn(iwin)+T]; for i=1:Ntr, data1=data(:,i); data1=extractdatapt(data1,t,1); % extract spike times in window,reset times to be relative to beginning of window J1=mtfftpt(data1,tapers,nfft,twin,f,findx); for k=1:C, for l=1:C, spec=squeeze(mean(conj(J1(:,:,k)).*J1(:,:,l),2)); Sc(:,k,l)=Sc(:,k,l)+spec; end end end end Sc=Sc/(Nwins*Ntr); end if d==2, % only one trial for iwin=1:Nwins, data1=data(:,i); data1=extractdatapt(data1,t,1); % extract spike times in window,reset times to be relative to beginning of window J1=mtfftpt(data1,tapers,nfft,twin,f,findx); for k=1:C, for l=1:C, Sc(:,k,l)=Sc(:,k,l)+squeeze(mean(conj(J1(:,:,k)).*J1(:,:,l),2)); end end end Sc=Sc/Nwins; end Cmat=Sc; Sdiag=zeros(length(findx),C); for k=1:C, Sdiag(:,k)=squeeze(Sc(:,k,k)); end for k=1:C, for l=1:C, Cmat(:,k,l)=Sc(:,k,l)./sqrt(abs(Sdiag(:,k).*Sdiag(:,l))); end end Ctot=zeros(length(findx),1); Cent=Ctot; Cvec=zeros(length(findx),C); for i=1:length(findx), [u s]=svd(squeeze(Sc(i,:,:)));s=diag(s); % Ctot(i)=s(1)/sum(s); Cent(i)=exp(mean(log(s.^2)))/mean(s.^2); Ctot(i)=s(1)/sum(s); Cent(i)=exp(mean(log(s)))/mean(s); Cvec(i,:)=transpose(u(:,1)); end