Explorar o código

Merge remote-tracking branch 'refs/remotes/origin/master' into HEAD

arefks hai 1 semana
pai
achega
0d254a7d21
Modificáronse 38 ficheiros con 128124 adicións e 365667 borrados
  1. 197 0
      code/GetQuantitativeValues_onlyCST.py
  2. 204 0
      code/GetQuantitativeValues_only_in_stroke_slices.py
  3. 1 1
      code/plotting_quantitative_dti_values.py
  4. 2 2
      code/ttest_group_differences.py
  5. 2 2
      code/volcano_plot.py
  6. BIN=BIN
      output/Figures/fa_over_time_plots/CST_MOp-int-py_contralesional_selfdrawnROA+CCcut.png
  7. BIN=BIN
      output/Figures/fa_over_time_plots/CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut.png
  8. 1859 2179
      output/Figures/pythonFigs/volcano_plot_0_ad.svg
  9. 1765 2115
      output/Figures/pythonFigs/volcano_plot_0_fa.svg
  10. 1883 2183
      output/Figures/pythonFigs/volcano_plot_0_md.svg
  11. 1822 2224
      output/Figures/pythonFigs/volcano_plot_0_rd.svg
  12. 1919 2269
      output/Figures/pythonFigs/volcano_plot_14_ad.svg
  13. 1764 2290
      output/Figures/pythonFigs/volcano_plot_14_fa.svg
  14. 1899 2293
      output/Figures/pythonFigs/volcano_plot_14_md.svg
  15. 1851 2236
      output/Figures/pythonFigs/volcano_plot_14_rd.svg
  16. 1950 2251
      output/Figures/pythonFigs/volcano_plot_21_ad.svg
  17. 1805 2312
      output/Figures/pythonFigs/volcano_plot_21_fa.svg
  18. 1977 2266
      output/Figures/pythonFigs/volcano_plot_21_md.svg
  19. 1842 2248
      output/Figures/pythonFigs/volcano_plot_21_rd.svg
  20. 1989 2345
      output/Figures/pythonFigs/volcano_plot_28_ad.svg
  21. 1857 2346
      output/Figures/pythonFigs/volcano_plot_28_fa.svg
  22. 2006 2392
      output/Figures/pythonFigs/volcano_plot_28_md.svg
  23. 1868 2376
      output/Figures/pythonFigs/volcano_plot_28_rd.svg
  24. 1891 2341
      output/Figures/pythonFigs/volcano_plot_3_ad.svg
  25. 1812 2244
      output/Figures/pythonFigs/volcano_plot_3_fa.svg
  26. 1892 2313
      output/Figures/pythonFigs/volcano_plot_3_md.svg
  27. 1928 2352
      output/Figures/pythonFigs/volcano_plot_3_rd.svg
  28. 1751 2427
      output/Figures/pythonFigs/volcano_plot_7_ad.svg
  29. 1797 2176
      output/Figures/pythonFigs/volcano_plot_7_fa.svg
  30. 1868 2266
      output/Figures/pythonFigs/volcano_plot_7_md.svg
  31. 1827 2247
      output/Figures/pythonFigs/volcano_plot_7_rd.svg
  32. 1 0
      output/Quantitative_outputs/Quantitative_results_from_dwi_processing_only_in_stroke_slices.csv
  33. 14733 0
      output/Quantitative_outputs/Significance_stroke_vs_sham_difference_withoutWMmask.csv
  34. 0 1
      output/Quantitative_outputs/old/Quantitative_results_from_dwi_processing.csv
  35. 0 1
      output/Quantitative_outputs/old/Quantitative_results_from_dwi_processing_merged_with_behavior_data.csv
  36. 0 310969
      output/Quantitative_outputs/old/Quantitative_results_from_dwi_processing_merged_with_behavior_data_short.csv
  37. 67441 0
      output/Quantitative_outputs/onlyCST/Quantitative_results_from_dwi_processing_withOutWM_and_partialCST.csv
  38. 721 0
      output/Quantitative_outputs/onlyCST/Significance_stroke_vs_sham_difference_withoutWMmask_partialCST.csv

+ 197 - 0
code/GetQuantitativeValues_onlyCST.py

@@ -0,0 +1,197 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Mon Nov 11 09:35:42 2024
+
+@author: arefks
+"""
+
+import os
+import glob
+import pandas as pd
+import nibabel as nib
+import numpy as np
+from tqdm import tqdm
+from concurrent.futures import ProcessPoolExecutor
+from scipy.ndimage import binary_dilation
+
+def create_output_dir(output_dir):
+    """Create the output directory if it does not exist."""
+    if not os.path.exists(output_dir):
+        os.makedirs(output_dir)
+
+def save_mask_as_nifti(mask_data, output_file):
+    """Save mask data as NIfTI file."""
+    mask_data_int = mask_data.astype(np.uint8)
+    mask_img = nib.Nifti1Image(mask_data_int, affine=None)
+    nib.save(mask_img, output_file)
+
+def process_single_file(file_info):
+    """Process a single file path."""
+    file_path, session_mapping, output_path, save_nifti_mask = file_info
+    
+    csvdata = []  # Local CSV data collector
+    
+    # Extract information from the file path
+    subject_id = file_path.split(os.sep)[-5]
+    time_point = file_path.split(os.sep)[-4]
+
+    # Map the extracted time_point directly using session_mapping
+    merged_time_point = session_mapping.get(time_point, None)
+
+    if merged_time_point is None:
+        print(f"Warning: No mapping found for {time_point}. Skipping file: {file_path}")
+        return []
+
+    # Extract the q_type from the filename
+    q_type = os.path.basename(file_path).split("_flipped")[0]
+
+    # Attempt to find the stroke mask path
+    try:
+        search_stroke = os.path.join(os.path.dirname(file_path), "*StrokeMask_scaled.nii")
+        stroke_path = glob.glob(search_stroke)[0]
+    except IndexError:
+        stroke_path = None
+
+    # Create the temp path to search for dwi_masks
+    temp_path = os.path.join(os.path.dirname(file_path), "RegisteredTractMasks_adjusted")
+    dwi_masks = glob.glob(os.path.join(temp_path, "CST*dwi_flipped.nii.gz")) + glob.glob(os.path.join(temp_path, "White_matter*dwi_flipped.nii.gz"))
+    white_matter_index = next((i for i, path in enumerate(dwi_masks) if "White_matter" in path), None)
+    
+    if white_matter_index is None:
+        print(f"Warning: White matter mask not found in {temp_path}. Skipping file: {file_path}")
+        return []
+    
+    white_matter_path = dwi_masks.pop(white_matter_index)
+    
+    # Load white matter mask
+    white_matter_img = nib.load(white_matter_path)
+    white_matter_data = white_matter_img.get_fdata()
+
+    # Load DWI data using nibabel
+    dwi_img = nib.load(file_path)
+    dwi_data = dwi_img.get_fdata()
+
+    # Loop through masks and calculate average values
+    pix_dialation = [0, 1, 2, 3, 4]
+    for mask_path in dwi_masks:
+        mask_name = os.path.basename(mask_path).replace("registered", "").replace("flipped", "").replace(".nii.gz", "").replace("__dwi_", "").replace("_dwi_", "")
+        mask_img = nib.load(mask_path)
+        mask_data_pre_dilation = mask_img.get_fdata()
+
+        # Determine if it's an AMBA mask
+        AMBA_flag = "AMBA" in mask_name
+
+        # Calculate the average value within the mask region for each dilation
+        for pp in pix_dialation:
+            if pp != 0:
+                mask_data0 = binary_dilation(mask_data_pre_dilation, iterations=pp)
+            else:
+                mask_data0 = mask_data_pre_dilation > 0
+
+            mask_data = mask_data0 #& (white_matter_data > 0)
+            if stroke_path:
+                stroke_image = nib.load(stroke_path)
+                stroke_data = stroke_image.get_fdata()
+            
+                # Subtracting stroke region from mask except in baseline
+                if merged_time_point != 0:
+                    mask_data = mask_data & (stroke_data < 1)
+            
+                    # Create an empty array to hold the updated mask data
+                    new_mask_data = np.zeros_like(mask_data)
+            
+                    # Iterate through each slice along the third axis and only retain slices where there is data in stroke_data
+                    for z in range(stroke_data.shape[2]):
+                        if np.any(stroke_data[:, :, z]):
+                            new_mask_data[:, :, z] = mask_data[:, :, z]
+            
+                    # Replace mask_data with the new filtered mask
+                    mask_data = new_mask_data
+            
+                strokeFlag = "Stroke"
+            else:
+                strokeFlag = "Sham"
+
+                
+            # Calculate average DWI value within the mask
+            masked_data = dwi_data[mask_data > 0]
+            non_zero_masked_data = masked_data[masked_data != 0]  # Exclude zero values
+            average_value = np.nanmean(non_zero_masked_data)  # Calculate mean only on non-zero elements
+            
+            # Calculate the number of voxels in the mask
+            num_voxels = non_zero_masked_data.size
+
+            # Save the mask as NIfTI file if the flag is set
+            if save_nifti_mask and pp > 0 and merged_time_point in [3] and q_type == "fa":
+                output_nifti_file = os.path.join(output_path,
+                                                  f"{subject_id}_tp_{merged_time_point}_{q_type}_{mask_name}_{pp}.nii.gz")
+                save_mask_as_nifti(mask_data, output_nifti_file)
+
+            # Append data to local CSV data
+            csvdata.append([file_path, subject_id, time_point, merged_time_point, q_type, mask_name, pp, average_value, strokeFlag, AMBA_flag, num_voxels])
+
+    return csvdata
+
+def process_files(input_path, output_path, save_nifti_mask):
+    """Process DWI files and generate data using parallel processing."""
+    session_mapping = {
+        "ses-Baseline": 0, "ses-Baseline1": 0, "ses-pre": 0,
+        "ses-P1": 3, "ses-P2": 3, "ses-P3": 3, "ses-P4": 3, "ses-P5": 3,
+        "ses-P6": 7, "ses-P7": 7, "ses-P8": 7, "ses-P9": 7, "ses-P10": 7,
+        "ses-P11": 14, "ses-P12": 14, "ses-P13": 14, "ses-P14": 14, 
+        "ses-P15": 14, "ses-P16": 14, "ses-P17": 14, "ses-P18": 14, 
+        "ses-P19": 21, "ses-D21": 21, "ses-P20": 21, "ses-P21": 21,
+        "ses-P22": 21, "ses-P23": 21, "ses-P24": 21, "ses-P25": 21,
+        "ses-P26": 28, "ses-P27": 28, "ses-P28": 28, "ses-P29": 28, 
+        "ses-P30": 28, "ses-P42": 42, "ses-P43": 42,
+        "ses-P56": 56, "ses-P57": 56, "ses-P58": 56,
+        "ses-P151": 28
+    }
+
+    # Get all relevant file paths
+    file_paths = glob.glob(os.path.join(input_path, "**", "dwi", "DSI_studio", "*_flipped.nii.gz"), recursive=True)
+
+    # Prepare arguments for parallel processing
+    arguments = [(file_path, session_mapping, output_path, save_nifti_mask) for file_path in file_paths]
+
+    # Initialize a list to store results
+    csv_data = []
+
+    # Use ProcessPoolExecutor to parallelize the file path processing
+    with ProcessPoolExecutor(max_workers=6) as executor:
+        # Process files in parallel
+        results = list(tqdm(executor.map(process_single_file, arguments), total=len(file_paths), desc="Processing files"))
+
+    # Aggregate the results
+    for result in results:
+        csv_data.extend(result)
+
+    # Create a DataFrame
+    df = pd.DataFrame(csv_data,
+                      columns=["fullpath", "subjectID", "timePoint", "merged_timepoint", "Qtype", "mask_name",
+                               "dialation_amount", "Value", "Group", "is_it_AMBA", "num_voxels"])
+
+    return df
+
+def main():
+    # Use argparse to get command-line inputs
+    import argparse
+    parser = argparse.ArgumentParser(description="Process DWI files and generate data.")
+    parser.add_argument("-i", "--input", type=str, required=True, help="Input directory containing DWI files.")
+    parser.add_argument("-o", "--output", type=str, required=True, help="Output directory to save results.")
+    parser.add_argument("-n", "--nifti-mask", action="store_true", default=False, help="Set to save masks as NIfTI files.")
+    args = parser.parse_args()
+
+    # Create the output directory if it does not exist
+    create_output_dir(args.output)
+
+    # Process files
+    df = process_files(args.input, args.output, args.nifti_mask)
+
+    # Save the DataFrame as CSV
+    csv_file = os.path.join(args.output, "Quantitative_results_from_dwi_processing.csv")
+    df.to_csv(csv_file, index=False)
+    print("CSV file created at:", csv_file)
+
+if __name__ == "__main__":
+    main()

+ 204 - 0
code/GetQuantitativeValues_only_in_stroke_slices.py

@@ -0,0 +1,204 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Mon Nov 11 12:49:37 2024
+
+@author: arefks
+"""
+
+# -*- coding: utf-8 -*-
+"""
+Created on Mon Nov 11 09:35:42 2024
+
+@author: arefks
+"""
+
+import os
+import glob
+import pandas as pd
+import nibabel as nib
+import numpy as np
+from tqdm import tqdm
+from concurrent.futures import ProcessPoolExecutor
+from scipy.ndimage import binary_dilation
+
+def create_output_dir(output_dir):
+    """Create the output directory if it does not exist."""
+    if not os.path.exists(output_dir):
+        os.makedirs(output_dir)
+
+def save_mask_as_nifti(mask_data, output_file):
+    """Save mask data as NIfTI file."""
+    mask_data_int = mask_data.astype(np.uint8)
+    mask_img = nib.Nifti1Image(mask_data_int, affine=None)
+    nib.save(mask_img, output_file)
+
+def process_single_file(file_info):
+    """Process a single file path."""
+    file_path, session_mapping, output_path, save_nifti_mask = file_info
+    
+    csvdata = []  # Local CSV data collector
+    
+    # Extract information from the file path
+    subject_id = file_path.split(os.sep)[-5]
+    time_point = file_path.split(os.sep)[-4]
+
+    # Map the extracted time_point directly using session_mapping
+    merged_time_point = session_mapping.get(time_point, None)
+
+    if merged_time_point is None:
+        print(f"Warning: No mapping found for {time_point}. Skipping file: {file_path}")
+        return []
+
+    # Extract the q_type from the filename
+    q_type = os.path.basename(file_path).split("_flipped")[0]
+
+    # Attempt to find the stroke mask path
+    try:
+        search_stroke = os.path.join(os.path.dirname(file_path), "*StrokeMask_scaled.nii")
+        stroke_path = glob.glob(search_stroke)[0]
+    except IndexError:
+        stroke_path = None
+
+    # Create the temp path to search for dwi_masks
+    temp_path = os.path.join(os.path.dirname(file_path), "RegisteredTractMasks_adjusted")
+    dwi_masks = glob.glob(os.path.join(temp_path, "*dwi_flipped.nii.gz")) 
+    white_matter_index = next((i for i, path in enumerate(dwi_masks) if "White_matter" in path), None)
+    
+    if white_matter_index is None:
+        print(f"Warning: White matter mask not found in {temp_path}. Skipping file: {file_path}")
+        return []
+    
+    white_matter_path = dwi_masks.pop(white_matter_index)
+    
+    # Load white matter mask
+    white_matter_img = nib.load(white_matter_path)
+    white_matter_data = white_matter_img.get_fdata()
+
+    # Load DWI data using nibabel
+    dwi_img = nib.load(file_path)
+    dwi_data = dwi_img.get_fdata()
+
+    # Loop through masks and calculate average values
+    pix_dialation = [0, 1, 2, 3, 4]
+    for mask_path in dwi_masks:
+        mask_name = os.path.basename(mask_path).replace("registered", "").replace("flipped", "").replace(".nii.gz", "").replace("__dwi_", "").replace("_dwi_", "")
+        mask_img = nib.load(mask_path)
+        mask_data_pre_dilation = mask_img.get_fdata()
+
+        # Determine if it's an AMBA mask
+        AMBA_flag = "AMBA" in mask_name
+
+        # Calculate the average value within the mask region for each dilation
+        for pp in pix_dialation:
+            if pp != 0:
+                mask_data0 = binary_dilation(mask_data_pre_dilation, iterations=pp)
+            else:
+                mask_data0 = mask_data_pre_dilation > 0
+
+            mask_data = mask_data0 #& (white_matter_data > 0)
+            if stroke_path:
+                stroke_image = nib.load(stroke_path)
+                stroke_data = stroke_image.get_fdata()
+            
+                # Subtracting stroke region from mask except in baseline
+                if merged_time_point != 0:
+                    mask_data = mask_data & (stroke_data < 1)
+            
+                    # Create an empty array to hold the updated mask data
+                    new_mask_data = np.zeros_like(mask_data)
+            
+                    # Iterate through each slice along the third axis and only retain slices where there is data in stroke_data
+                    for z in range(stroke_data.shape[2]):
+                        if np.any(stroke_data[:, :, z]):
+                            new_mask_data[:, :, z] = mask_data[:, :, z]
+            
+                    # Replace mask_data with the new filtered mask
+                    mask_data = new_mask_data
+            
+                strokeFlag = "Stroke"
+            else:
+                strokeFlag = "Sham"
+
+                
+            # Calculate average DWI value within the mask
+            masked_data = dwi_data[mask_data > 0]
+            non_zero_masked_data = masked_data[masked_data != 0]  # Exclude zero values
+            average_value = np.nanmean(non_zero_masked_data)  # Calculate mean only on non-zero elements
+            
+            # Calculate the number of voxels in the mask
+            num_voxels = non_zero_masked_data.size
+
+            # Save the mask as NIfTI file if the flag is set
+            if save_nifti_mask and pp > 0 and merged_time_point in [3] and q_type == "fa":
+                output_nifti_file = os.path.join(output_path,
+                                                  f"{subject_id}_tp_{merged_time_point}_{q_type}_{mask_name}_{pp}.nii.gz")
+                save_mask_as_nifti(mask_data, output_nifti_file)
+
+            # Append data to local CSV data
+            csvdata.append([file_path, subject_id, time_point, merged_time_point, q_type, mask_name, pp, average_value, strokeFlag, AMBA_flag, num_voxels])
+
+    return csvdata
+
+def process_files(input_path, output_path, save_nifti_mask):
+    """Process DWI files and generate data using parallel processing."""
+    session_mapping = {
+        "ses-Baseline": 0, "ses-Baseline1": 0, "ses-pre": 0,
+        "ses-P1": 3, "ses-P2": 3, "ses-P3": 3, "ses-P4": 3, "ses-P5": 3,
+        "ses-P6": 7, "ses-P7": 7, "ses-P8": 7, "ses-P9": 7, "ses-P10": 7,
+        "ses-P11": 14, "ses-P12": 14, "ses-P13": 14, "ses-P14": 14, 
+        "ses-P15": 14, "ses-P16": 14, "ses-P17": 14, "ses-P18": 14, 
+        "ses-P19": 21, "ses-D21": 21, "ses-P20": 21, "ses-P21": 21,
+        "ses-P22": 21, "ses-P23": 21, "ses-P24": 21, "ses-P25": 21,
+        "ses-P26": 28, "ses-P27": 28, "ses-P28": 28, "ses-P29": 28, 
+        "ses-P30": 28, "ses-P42": 42, "ses-P43": 42,
+        "ses-P56": 56, "ses-P57": 56, "ses-P58": 56,
+        "ses-P151": 28
+    }
+
+    # Get all relevant file paths
+    file_paths = glob.glob(os.path.join(input_path, "**", "dwi", "DSI_studio", "*_flipped.nii.gz"), recursive=True)
+
+    # Prepare arguments for parallel processing
+    arguments = [(file_path, session_mapping, output_path, save_nifti_mask) for file_path in file_paths]
+
+    # Initialize a list to store results
+    csv_data = []
+
+    # Use ProcessPoolExecutor to parallelize the file path processing
+    with ProcessPoolExecutor(max_workers=6) as executor:
+        # Process files in parallel
+        results = list(tqdm(executor.map(process_single_file, arguments), total=len(file_paths), desc="Processing files"))
+
+    # Aggregate the results
+    for result in results:
+        csv_data.extend(result)
+
+    # Create a DataFrame
+    df = pd.DataFrame(csv_data,
+                      columns=["fullpath", "subjectID", "timePoint", "merged_timepoint", "Qtype", "mask_name",
+                               "dialation_amount", "Value", "Group", "is_it_AMBA", "num_voxels"])
+
+    return df
+
+def main():
+    # Use argparse to get command-line inputs
+    import argparse
+    parser = argparse.ArgumentParser(description="Process DWI files and generate data.")
+    parser.add_argument("-i", "--input", type=str, required=True, help="Input directory containing DWI files.")
+    parser.add_argument("-o", "--output", type=str, required=True, help="Output directory to save results.")
+    parser.add_argument("-n", "--nifti-mask", action="store_true", default=False, help="Set to save masks as NIfTI files.")
+    args = parser.parse_args()
+
+    # Create the output directory if it does not exist
+    create_output_dir(args.output)
+
+    # Process files
+    df = process_files(args.input, args.output, args.nifti_mask)
+
+    # Save the DataFrame as CSV
+    csv_file = os.path.join(args.output, "Quantitative_results_from_dwi_processing_only_in_stroke_slices.csv")
+    df.to_csv(csv_file, index=False)
+    print("CSV file created at:", csv_file)
+
+if __name__ == "__main__":
+    main()

+ 1 - 1
code/plotting_quantitative_dti_values.py

@@ -100,7 +100,7 @@ code_dir = os.path.dirname(os.path.abspath(__file__))
 parent_dir = os.path.dirname(code_dir)
 
 # Define the path for the input CSV file
-input_file_path = os.path.join(parent_dir, 'output', "Quantitative_outputs","old", 'Quantitative_results_from_dwi_processing.csv')
+input_file_path = os.path.join(parent_dir, 'output', "Quantitative_outputs","onlyCST", 'Quantitative_results_from_dwi_processing_withOutWM_and_partialCST.csv')
 
 # Define the path for the output folder to save plots
 plots_output_dir = os.path.join(parent_dir, 'output', 'Figures', 'pythonFigs')

+ 2 - 2
code/ttest_group_differences.py

@@ -17,7 +17,7 @@ code_dir = os.path.dirname(os.path.abspath(__file__))
 parent_dir = os.path.dirname(code_dir)
 
 # Load the CSV data
-input_file_path = os.path.join(parent_dir, 'output', "Quantitative_outputs", 'Quantitative_results_from_dwi_processing_merged_with_behavior_data.csv')
+input_file_path = os.path.join(parent_dir, 'output', "Quantitative_outputs", "onlyCST",'Quantitative_results_from_dwi_processing_withOutWM_and_partialCST.csv')
 df = pd.read_csv(input_file_path, low_memory=False)
 
 # Initialize an empty list to store results
@@ -106,7 +106,7 @@ with ThreadPoolExecutor(max_workers=6) as executor:
 results_df = pd.DataFrame(results)
 
 # Define output path for the new CSV
-output_file_path = os.path.join(parent_dir, 'output', "Quantitative_outputs", 'Significance_stroke_vs_sham_difference_withoutWMmask.csv')
+output_file_path = os.path.join(parent_dir, 'output', "Quantitative_outputs", 'Significance_stroke_vs_sham_difference_withoutWMmask_partialCST.csv')
 
 # Save results to CSV
 results_df.to_csv(output_file_path, index=False)

+ 2 - 2
code/volcano_plot.py

@@ -14,8 +14,8 @@ code_dir = os.path.dirname(os.path.abspath(__file__))
 parent_dir = os.path.dirname(code_dir)
 
 # Define the path for the input CSV files
-original_file_path = os.path.join(parent_dir, 'output', 'Quantitative_outputs', 'old', 'Quantitative_results_from_dwi_processing.csv')
-results_file_path = os.path.join(parent_dir, 'output', 'Quantitative_outputs', 'Significance_stroke_vs_sham_difference.csv')
+original_file_path = os.path.join(parent_dir, 'output', 'Quantitative_outputs',"onlyCST", 'Quantitative_results_from_dwi_processing_withOutWM_and_partialCST.csv')
+results_file_path = os.path.join(parent_dir, 'output', 'Quantitative_outputs',"onlyCST", 'Significance_stroke_vs_sham_difference_withoutWMmask_partialCST.csv')
 
 # Define the path for the output folders to save plots
 plots_output_dir = os.path.join(parent_dir, 'output', 'Figures', 'pythonFigs')

BIN=BIN
output/Figures/fa_over_time_plots/CST_MOp-int-py_contralesional_selfdrawnROA+CCcut.png


BIN=BIN
output/Figures/fa_over_time_plots/CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut.png


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1859 - 2179
output/Figures/pythonFigs/volcano_plot_0_ad.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1765 - 2115
output/Figures/pythonFigs/volcano_plot_0_fa.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1883 - 2183
output/Figures/pythonFigs/volcano_plot_0_md.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1822 - 2224
output/Figures/pythonFigs/volcano_plot_0_rd.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1919 - 2269
output/Figures/pythonFigs/volcano_plot_14_ad.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1764 - 2290
output/Figures/pythonFigs/volcano_plot_14_fa.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1899 - 2293
output/Figures/pythonFigs/volcano_plot_14_md.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1851 - 2236
output/Figures/pythonFigs/volcano_plot_14_rd.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1950 - 2251
output/Figures/pythonFigs/volcano_plot_21_ad.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1805 - 2312
output/Figures/pythonFigs/volcano_plot_21_fa.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1977 - 2266
output/Figures/pythonFigs/volcano_plot_21_md.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1842 - 2248
output/Figures/pythonFigs/volcano_plot_21_rd.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1989 - 2345
output/Figures/pythonFigs/volcano_plot_28_ad.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1857 - 2346
output/Figures/pythonFigs/volcano_plot_28_fa.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 2006 - 2392
output/Figures/pythonFigs/volcano_plot_28_md.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1868 - 2376
output/Figures/pythonFigs/volcano_plot_28_rd.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1891 - 2341
output/Figures/pythonFigs/volcano_plot_3_ad.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1812 - 2244
output/Figures/pythonFigs/volcano_plot_3_fa.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1892 - 2313
output/Figures/pythonFigs/volcano_plot_3_md.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1928 - 2352
output/Figures/pythonFigs/volcano_plot_3_rd.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1751 - 2427
output/Figures/pythonFigs/volcano_plot_7_ad.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1797 - 2176
output/Figures/pythonFigs/volcano_plot_7_fa.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1868 - 2266
output/Figures/pythonFigs/volcano_plot_7_md.svg


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 1827 - 2247
output/Figures/pythonFigs/volcano_plot_7_rd.svg


+ 1 - 0
output/Quantitative_outputs/Quantitative_results_from_dwi_processing_only_in_stroke_slices.csv

@@ -0,0 +1 @@
+/annex/objects/MD5E-s235811101--07b5d750a8d6b775f37029b451169ebe.csv

A diferenza do arquivo foi suprimida porque é demasiado grande
+ 14733 - 0
output/Quantitative_outputs/Significance_stroke_vs_sham_difference_withoutWMmask.csv


+ 0 - 1
output/Quantitative_outputs/old/Quantitative_results_from_dwi_processing.csv

@@ -1 +0,0 @@
-/annex/objects/MD5E-s241690371--8a191eeb1b83fc742fd0447859e21fc5.csv

+ 0 - 1
output/Quantitative_outputs/old/Quantitative_results_from_dwi_processing_merged_with_behavior_data.csv

@@ -1 +0,0 @@
-/annex/objects/MD5E-s335815237--03564a439fd41d8d78171733f4986a7b.csv

A diferenza do arquivo foi suprimida porque é demasiado grande
+ 0 - 310969
output/Quantitative_outputs/old/Quantitative_results_from_dwi_processing_merged_with_behavior_data_short.csv


A diferenza do arquivo foi suprimida porque é demasiado grande
+ 67441 - 0
output/Quantitative_outputs/onlyCST/Quantitative_results_from_dwi_processing_withOutWM_and_partialCST.csv


+ 721 - 0
output/Quantitative_outputs/onlyCST/Significance_stroke_vs_sham_difference_withoutWMmask_partialCST.csv

@@ -0,0 +1,721 @@
+mask_name,Qtype,merged_timepoint,dialation_amount,Pvalue
+CST_MOp-int-py_contralesional_CCasROA,fa,7,0,6.652607466913161e-19
+CST_MOp-int-py_contralesional_CCasROA,fa,0,2,0.7675523372233184
+CST_MOp-int-py_contralesional_CCasROA,fa,0,3,0.8237722763001227
+CST_MOp-int-py_contralesional_CCasROA,fa,0,4,0.5790896324861969
+CST_MOp-int-py_contralesional_CCasROA,fa,0,0,0.637475189253601
+CST_MOp-int-py_contralesional_CCasROA,fa,7,2,5.178660627622594e-18
+CST_MOp-int-py_contralesional_CCasROA,fa,7,4,7.342107433974614e-17
+CST_MOp-int-py_contralesional_CCasROA,fa,0,1,0.54630703998025
+CST_MOp-int-py_contralesional_CCasROA,fa,7,3,1.8764913471523474e-17
+CST_MOp-int-py_contralesional_CCasROA,fa,7,1,5.669817717417617e-11
+CST_MOp-int-py_contralesional_CCasROA,fa,28,1,4.879588057610322e-09
+CST_MOp-int-py_contralesional_CCasROA,fa,28,2,5.705180168639873e-10
+CST_MOp-int-py_contralesional_CCasROA,fa,28,3,7.137930927315022e-10
+CST_MOp-int-py_contralesional_CCasROA,fa,28,4,3.6601592783846288e-09
+CST_MOp-int-py_contralesional_CCasROA,fa,14,0,5.820317749237909e-16
+CST_MOp-int-py_contralesional_CCasROA,fa,14,1,6.905513983204099e-20
+CST_MOp-int-py_contralesional_CCasROA,fa,28,0,1.8501032515774086e-08
+CST_MOp-int-py_contralesional_CCasROA,fa,14,4,7.996319626634059e-18
+CST_MOp-int-py_contralesional_CCasROA,fa,21,1,8.444502930619876e-08
+CST_MOp-int-py_contralesional_CCasROA,fa,14,3,2.5544378144142956e-18
+CST_MOp-int-py_contralesional_CCasROA,fa,14,2,1.983466660413048e-19
+CST_MOp-int-py_contralesional_CCasROA,fa,21,2,9.34710160649577e-11
+CST_MOp-int-py_contralesional_CCasROA,fa,21,3,5.592417867904154e-10
+CST_MOp-int-py_contralesional_CCasROA,fa,21,0,9.809876910239736e-11
+CST_MOp-int-py_contralesional_CCasROA,fa,21,4,1.1709826929737468e-09
+CST_MOp-int-py_contralesional_CCasROA,fa,3,0,6.536144027265355e-11
+CST_MOp-int-py_contralesional_CCasROA,fa,3,1,8.219014292994401e-11
+CST_MOp-int-py_contralesional_CCasROA,md,0,2,0.8427307828009329
+CST_MOp-int-py_contralesional_CCasROA,fa,3,2,5.205864888541394e-10
+CST_MOp-int-py_contralesional_CCasROA,md,0,3,0.6825760206715552
+CST_MOp-int-py_contralesional_CCasROA,fa,3,3,2.892206607174956e-09
+CST_MOp-int-py_contralesional_CCasROA,md,0,0,0.9322380949872567
+CST_MOp-int-py_contralesional_CCasROA,fa,3,4,5.0541803942500176e-11
+CST_MOp-int-py_contralesional_CCasROA,md,7,1,1.109082453686107e-09
+CST_MOp-int-py_contralesional_CCasROA,md,7,0,3.2018512819690956e-07
+CST_MOp-int-py_contralesional_CCasROA,md,7,2,3.752576851199605e-10
+CST_MOp-int-py_contralesional_CCasROA,md,0,4,0.724640093740274
+CST_MOp-int-py_contralesional_CCasROA,md,0,1,0.8554213404566181
+CST_MOp-int-py_contralesional_CCasROA,md,7,4,3.5417267178863594e-10
+CST_MOp-int-py_contralesional_CCasROA,md,7,3,3.3424587303012116e-10
+CST_MOp-int-py_contralesional_CCasROA,md,28,0,1.8598893412557117e-05
+CST_MOp-int-py_contralesional_CCasROA,md,28,2,3.1711874021483795e-07
+CST_MOp-int-py_contralesional_CCasROA,md,14,0,3.28421625657132e-08
+CST_MOp-int-py_contralesional_CCasROA,md,28,4,2.963135658229383e-07
+CST_MOp-int-py_contralesional_CCasROA,md,14,1,6.068704069346274e-10
+CST_MOp-int-py_contralesional_CCasROA,md,14,3,1.9126314263986903e-11
+CST_MOp-int-py_contralesional_CCasROA,md,28,1,6.196378009069319e-07
+CST_MOp-int-py_contralesional_CCasROA,md,28,3,3.630412496458389e-07
+CST_MOp-int-py_contralesional_CCasROA,md,14,2,7.621317301005749e-11
+CST_MOp-int-py_contralesional_CCasROA,md,21,1,1.0595321058391042e-07
+CST_MOp-int-py_contralesional_CCasROA,md,21,0,4.446112149957283e-06
+CST_MOp-int-py_contralesional_CCasROA,md,3,0,3.047790290490743e-09
+CST_MOp-int-py_contralesional_CCasROA,md,14,4,1.8081921692978447e-11
+CST_MOp-int-py_contralesional_CCasROA,md,21,2,3.6236629933498567e-08
+CST_MOp-int-py_contralesional_CCasROA,md,3,1,1.9206928205298198e-10
+CST_MOp-int-py_contralesional_CCasROA,md,21,4,7.826520127853957e-08
+CST_MOp-int-py_contralesional_CCasROA,md,3,2,1.0323210227056848e-10
+CST_MOp-int-py_contralesional_CCasROA,ad,0,0,0.8237722763001227
+CST_MOp-int-py_contralesional_CCasROA,md,3,4,6.1330484143946e-10
+CST_MOp-int-py_contralesional_CCasROA,md,3,3,1.6229158093195045e-10
+CST_MOp-int-py_contralesional_CCasROA,md,21,3,3.6236629933498567e-08
+CST_MOp-int-py_contralesional_CCasROA,ad,0,3,0.6299247875516834
+CST_MOp-int-py_contralesional_CCasROA,ad,0,4,0.5517063696710396
+CST_MOp-int-py_contralesional_CCasROA,ad,7,0,5.148006052051136e-19
+CST_MOp-int-py_contralesional_CCasROA,ad,7,1,3.249464585346491e-12
+CST_MOp-int-py_contralesional_CCasROA,ad,0,2,0.7924072698637371
+CST_MOp-int-py_contralesional_CCasROA,ad,7,2,3.692509705360986e-12
+CST_MOp-int-py_contralesional_CCasROA,ad,0,1,0.938678218411883
+CST_MOp-int-py_contralesional_CCasROA,ad,7,3,5.407809363997283e-12
+CST_MOp-int-py_contralesional_CCasROA,ad,7,4,7.415729311989103e-12
+CST_MOp-int-py_contralesional_CCasROA,ad,28,3,3.106483244364579e-08
+CST_MOp-int-py_contralesional_CCasROA,ad,28,0,9.12441938774013e-08
+CST_MOp-int-py_contralesional_CCasROA,ad,28,2,4.466587675980479e-08
+CST_MOp-int-py_contralesional_CCasROA,ad,14,0,7.906113061115922e-13
+CST_MOp-int-py_contralesional_CCasROA,ad,14,2,1.7395680890603113e-13
+CST_MOp-int-py_contralesional_CCasROA,ad,28,4,3.3415557242377274e-08
+CST_MOp-int-py_contralesional_CCasROA,ad,28,1,5.159107563567719e-08
+CST_MOp-int-py_contralesional_CCasROA,ad,14,1,4.336104421208715e-13
+CST_MOp-int-py_contralesional_CCasROA,ad,14,4,1.8496331809668052e-13
+CST_MOp-int-py_contralesional_CCasROA,ad,21,4,1.1956539630564025e-08
+CST_MOp-int-py_contralesional_CCasROA,ad,21,1,2.0908615962796287e-08
+CST_MOp-int-py_contralesional_CCasROA,ad,21,2,8.652816642450968e-09
+CST_MOp-int-py_contralesional_CCasROA,ad,21,0,4.4788072016934115e-08
+CST_MOp-int-py_contralesional_CCasROA,ad,21,3,8.652816642450968e-09
+CST_MOp-int-py_contralesional_CCasROA,ad,14,3,1.1301363592297982e-13
+CST_MOp-int-py_contralesional_CCasROA,ad,3,0,4.365048253948209e-11
+CST_MOp-int-py_contralesional_CCasROA,ad,3,2,1.829846281900789e-12
+CST_MOp-int-py_contralesional_CCasROA,ad,3,1,4.314224116131839e-12
+CST_MOp-int-py_contralesional_CCasROA,rd,0,0,0.8174749816054209
+CST_MOp-int-py_contralesional_CCasROA,rd,0,1,0.8237722763001227
+CST_MOp-int-py_contralesional_CCasROA,ad,3,4,9.446121310481204e-12
+CST_MOp-int-py_contralesional_CCasROA,rd,0,2,0.8049160569603682
+CST_MOp-int-py_contralesional_CCasROA,rd,0,4,0.7861726380459962
+CST_MOp-int-py_contralesional_CCasROA,rd,7,1,0.020386302051466906
+CST_MOp-int-py_contralesional_CCasROA,rd,7,0,0.781739021323575
+CST_MOp-int-py_contralesional_CCasROA,ad,3,3,3.381489119357775e-12
+CST_MOp-int-py_contralesional_CCasROA,rd,7,4,5.526101555643637e-06
+CST_MOp-int-py_contralesional_CCasROA,rd,0,3,0.712530033811066
+CST_MOp-int-py_contralesional_CCasROA,rd,7,3,1.4469958085555297e-05
+CST_MOp-int-py_contralesional_CCasROA,rd,7,2,0.00014691968186656573
+CST_MOp-int-py_contralesional_CCasROA,rd,28,0,0.8897281658283644
+CST_MOp-int-py_contralesional_CCasROA,rd,28,1,0.1810799105930424
+CST_MOp-int-py_contralesional_CCasROA,rd,28,3,0.0015369499322173048
+CST_MOp-int-py_contralesional_CCasROA,rd,28,4,0.000647760824795384
+CST_MOp-int-py_contralesional_CCasROA,rd,28,2,0.012799587552383172
+CST_MOp-int-py_contralesional_CCasROA,rd,14,0,0.6643905428404697
+CST_MOp-int-py_contralesional_CCasROA,rd,14,1,0.036848673568405335
+CST_MOp-int-py_contralesional_CCasROA,rd,14,3,1.544656759674863e-05
+CST_MOp-int-py_contralesional_CCasROA,rd,21,0,0.7796011011740385
+CST_MOp-int-py_contralesional_CCasROA,rd,14,2,0.0004732927463429877
+CST_MOp-int-py_contralesional_CCasROA,rd,14,4,4.739759466552661e-06
+CST_MOp-int-py_contralesional_CCasROA,rd,21,4,0.0005054948387894543
+CST_MOp-int-py_contralesional_CCasROA,rd,21,2,0.0006514618522230931
+CST_MOp-int-py_contralesional_CCasROA,rd,21,3,0.0001954902860349964
+CST_MOp-int-py_contralesional_CCasROA,rd,21,1,0.052225217298541474
+CST_MOp-int-py_contralesional_CCasROA,rd,3,1,0.00010713166495281929
+CST_MOp-int-py_contralesional_CCasROA,rd,3,0,0.11859063388229475
+CST_MOp-int-py_contralesional_CCasROA,rd,3,2,8.908999563280463e-07
+CST_MOp-int-py_contralesional_CCcut,fa,0,0,0.5919487458024012
+CST_MOp-int-py_contralesional_CCasROA,rd,3,3,3.820246361807711e-07
+CST_MOp-int-py_contralesional_CCasROA,rd,3,4,4.5755342676364076e-07
+CST_MOp-int-py_contralesional_CCcut,fa,0,1,0.54630703998025
+CST_MOp-int-py_contralesional_CCcut,fa,0,2,0.7675523372233184
+CST_MOp-int-py_contralesional_CCcut,fa,7,3,5.839449233822061e-18
+CST_MOp-int-py_contralesional_CCcut,fa,7,1,1.386203866382564e-11
+CST_MOp-int-py_contralesional_CCcut,fa,0,4,0.5790896324861969
+CST_MOp-int-py_contralesional_CCcut,fa,7,2,7.629765580210567e-19
+CST_MOp-int-py_contralesional_CCcut,fa,0,3,0.7065018524230195
+CST_MOp-int-py_contralesional_CCcut,fa,7,0,9.418215860146766e-20
+CST_MOp-int-py_contralesional_CCcut,fa,28,0,4.82541328886757e-09
+CST_MOp-int-py_contralesional_CCcut,fa,28,1,1.2800374465318371e-09
+CST_MOp-int-py_contralesional_CCcut,fa,28,3,2.2283433828015375e-10
+CST_MOp-int-py_contralesional_CCcut,fa,7,4,3.453015413585819e-17
+CST_MOp-int-py_contralesional_CCcut,fa,14,0,2.0941394743882057e-16
+CST_MOp-int-py_contralesional_CCcut,fa,14,3,8.52965830469447e-19
+CST_MOp-int-py_contralesional_CCcut,fa,14,1,1.5129945674446083e-20
+CST_MOp-int-py_contralesional_CCcut,fa,14,2,5.085667098239728e-20
+CST_MOp-int-py_contralesional_CCcut,fa,21,0,5.375960044136736e-11
+CST_MOp-int-py_contralesional_CCcut,fa,28,2,2.3024313655578563e-10
+CST_MOp-int-py_contralesional_CCcut,fa,28,4,1.1540008108965964e-09
+CST_MOp-int-py_contralesional_CCcut,fa,21,1,4.160095478969232e-11
+CST_MOp-int-py_contralesional_CCcut,fa,14,4,4.5053619554567694e-18
+CST_MOp-int-py_contralesional_CCcut,fa,21,4,4.941618986164859e-08
+CST_MOp-int-py_contralesional_CCcut,fa,21,3,6.944183134626591e-10
+CST_MOp-int-py_contralesional_CCcut,fa,3,4,6.90343396308974e-11
+CST_MOp-int-py_contralesional_CCcut,fa,3,0,3.743504562957423e-10
+CST_MOp-int-py_contralesional_CCcut,md,0,0,0.964474638975925
+CST_MOp-int-py_contralesional_CCcut,fa,21,2,8.860616777538137e-11
+CST_MOp-int-py_contralesional_CCcut,fa,3,2,9.464950620602183e-10
+CST_MOp-int-py_contralesional_CCcut,fa,3,1,1.815942222582872e-10
+CST_MOp-int-py_contralesional_CCcut,md,0,4,0.7368194410491711
+CST_MOp-int-py_contralesional_CCcut,md,0,1,0.8111894453413765
+CST_MOp-int-py_contralesional_CCcut,md,7,0,1.4781219148685458e-07
+CST_MOp-int-py_contralesional_CCcut,fa,3,3,4.167368439971222e-09
+CST_MOp-int-py_contralesional_CCcut,md,0,2,0.8490711723505258
+CST_MOp-int-py_contralesional_CCcut,md,7,3,2.2236090311834603e-10
+CST_MOp-int-py_contralesional_CCcut,md,7,2,2.2236090311834603e-10
+CST_MOp-int-py_contralesional_CCcut,md,7,4,3.752576851199605e-10
+CST_MOp-int-py_contralesional_CCcut,md,0,3,0.6531138494354656
+CST_MOp-int-py_contralesional_CCcut,md,7,1,5.612638778568332e-10
+CST_MOp-int-py_contralesional_CCcut,md,28,0,1.8598893412557117e-05
+CST_MOp-int-py_contralesional_CCcut,md,28,2,5.426320198150467e-07
+CST_MOp-int-py_contralesional_CCcut,md,28,3,3.1711874021483795e-07
+CST_MOp-int-py_contralesional_CCcut,md,14,1,6.731899621739045e-10
+CST_MOp-int-py_contralesional_CCcut,md,28,4,3.3933088045088313e-07
+CST_MOp-int-py_contralesional_CCcut,md,14,3,1.5272610786746716e-11
+CST_MOp-int-py_contralesional_CCcut,md,28,1,9.191459673479799e-07
+CST_MOp-int-py_contralesional_CCcut,md,14,0,2.5990979271154352e-08
+CST_MOp-int-py_contralesional_CCcut,md,14,2,6.470278999638799e-11
+CST_MOp-int-py_contralesional_CCcut,md,14,4,1.4434855807972333e-11
+CST_MOp-int-py_contralesional_CCcut,md,21,0,4.157486641642436e-06
+CST_MOp-int-py_contralesional_CCcut,md,21,1,8.444502930619876e-08
+CST_MOp-int-py_contralesional_CCcut,md,21,2,3.351728139067988e-08
+CST_MOp-int-py_contralesional_CCcut,md,21,4,5.764390033814004e-08
+CST_MOp-int-py_contralesional_CCcut,md,3,0,4.622784342763889e-09
+CST_MOp-int-py_contralesional_CCcut,md,3,2,9.212555837548444e-11
+CST_MOp-int-py_contralesional_CCcut,md,3,1,1.7167802944325098e-10
+CST_MOp-int-py_contralesional_CCcut,md,3,3,1.370412324747983e-10
+CST_MOp-int-py_contralesional_CCcut,md,21,3,3.099633103003526e-08
+CST_MOp-int-py_contralesional_CCcut,md,3,4,5.205864888541394e-10
+CST_MOp-int-py_contralesional_CCcut,ad,0,1,0.964474638975925
+CST_MOp-int-py_contralesional_CCcut,ad,0,2,0.7799516877664605
+CST_MOp-int-py_contralesional_CCcut,ad,0,0,0.5517063696710396
+CST_MOp-int-py_contralesional_CCcut,ad,7,1,2.8586675589865594e-12
+CST_MOp-int-py_contralesional_CCcut,ad,0,4,0.562583059750827
+CST_MOp-int-py_contralesional_CCcut,ad,0,3,0.618463762755588
+CST_MOp-int-py_contralesional_CCcut,ad,7,0,3.249464585346491e-12
+CST_MOp-int-py_contralesional_CCcut,ad,7,4,6.963001597311851e-12
+CST_MOp-int-py_contralesional_CCcut,ad,7,3,5.075644298024265e-12
+CST_MOp-int-py_contralesional_CCcut,ad,7,2,3.4640489133072246e-12
+CST_MOp-int-py_contralesional_CCcut,ad,28,0,6.396674744175427e-08
+CST_MOp-int-py_contralesional_CCcut,ad,28,1,6.396674744175427e-08
+CST_MOp-int-py_contralesional_CCcut,ad,14,1,1.0931354102747295e-18
+CST_MOp-int-py_contralesional_CCcut,ad,14,0,1.2380408623880572e-18
+CST_MOp-int-py_contralesional_CCcut,ad,28,3,2.8874877211491212e-08
+CST_MOp-int-py_contralesional_CCcut,ad,28,4,3.5938440788233126e-08
+CST_MOp-int-py_contralesional_CCcut,ad,14,2,1.2021962498145084e-13
+CST_MOp-int-py_contralesional_CCcut,ad,28,2,4.466587675980479e-08
+CST_MOp-int-py_contralesional_CCcut,ad,14,4,1.44656247334456e-13
+CST_MOp-int-py_contralesional_CCcut,ad,14,3,8.819957757143443e-14
+CST_MOp-int-py_contralesional_CCcut,ad,21,0,2.1837189275599606e-08
+CST_MOp-int-py_contralesional_CCcut,ad,21,1,1.103095028385563e-08
+CST_MOp-int-py_contralesional_CCcut,ad,3,1,6.589161574483129e-12
+CST_MOp-int-py_contralesional_CCcut,ad,21,3,6.243603897208754e-09
+CST_MOp-int-py_contralesional_CCcut,ad,21,4,9.384020170416095e-09
+CST_MOp-int-py_contralesional_CCcut,ad,21,2,5.297808868184494e-09
+CST_MOp-int-py_contralesional_CCcut,ad,3,2,1.6169536483340598e-12
+CST_MOp-int-py_contralesional_CCcut,ad,3,3,2.4897479799288886e-12
+CST_MOp-int-py_contralesional_CCcut,rd,0,3,0.7185762288628982
+CST_MOp-int-py_contralesional_CCcut,ad,3,0,7.330499469606729e-11
+CST_MOp-int-py_contralesional_CCcut,ad,3,4,7.431856000308114e-12
+CST_MOp-int-py_contralesional_CCcut,rd,0,2,0.8237722763001227
+CST_MOp-int-py_contralesional_CCcut,rd,0,4,0.7799516877664605
+CST_MOp-int-py_contralesional_CCcut,rd,0,0,0.7185762288628982
+CST_MOp-int-py_contralesional_CCcut,rd,7,0,0.7842661103192
+CST_MOp-int-py_contralesional_CCcut,rd,0,1,0.773744796048893
+CST_MOp-int-py_contralesional_CCcut,rd,7,2,0.0002258978838053323
+CST_MOp-int-py_contralesional_CCcut,rd,7,3,1.847491296625097e-05
+CST_MOp-int-py_contralesional_CCcut,rd,7,4,3.915724169494704e-06
+CST_MOp-int-py_contralesional_CCcut,rd,7,1,0.02580747776763159
+CST_MOp-int-py_contralesional_CCcut,rd,28,1,0.20286012145200405
+CST_MOp-int-py_contralesional_CCcut,rd,28,0,0.734490134101505
+CST_MOp-int-py_contralesional_CCcut,rd,28,2,0.017591245763553084
+CST_MOp-int-py_contralesional_CCcut,rd,14,1,0.05542492315759687
+CST_MOp-int-py_contralesional_CCcut,rd,28,4,0.0006788368799283726
+CST_MOp-int-py_contralesional_CCcut,rd,28,3,0.0016778774689333806
+CST_MOp-int-py_contralesional_CCcut,rd,14,0,0.9347578327508653
+CST_MOp-int-py_contralesional_CCcut,rd,14,4,3.598981417480729e-06
+CST_MOp-int-py_contralesional_CCcut,rd,14,2,0.0007226752284460202
+CST_MOp-int-py_contralesional_CCcut,rd,14,3,1.6030087334918086e-05
+CST_MOp-int-py_contralesional_CCcut,rd,21,2,0.0006850032079477505
+CST_MOp-int-py_contralesional_CCcut,rd,21,3,0.0001954902860349964
+CST_MOp-int-py_contralesional_CCcut,rd,21,1,0.048986274269788424
+CST_MOp-int-py_contralesional_CCcut,rd,21,4,0.00027004647971604095
+CST_MOp-int-py_contralesional_CCcut,rd,21,0,0.6746619877486129
+CST_MOp-int-py_contralesional_CCcut,rd,3,2,1.2091665785212206e-06
+CST_MOp-int-py_contralesional_CCcut,rd,3,0,0.21403223584809095
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,0,0,0.6769092624358142
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,0,1,0.6127676371364766
+CST_MOp-int-py_contralesional_CCcut,rd,3,1,0.00016281839793411167
+CST_MOp-int-py_contralesional_CCcut,rd,3,4,5.473876682028213e-07
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,0,3,0.7613746828586414
+CST_MOp-int-py_contralesional_CCcut,rd,3,3,2.7783121989076025e-07
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,0,4,0.607094809919702
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,7,3,7.1335996954367e-18
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,0,2,0.8300809377009765
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,7,0,8.898188010912583e-19
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,7,4,3.953485004580814e-17
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,7,1,1.669765209307438e-11
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,7,2,7.064303401312086e-19
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,28,2,1.8278993008370333e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,28,1,9.237413488770251e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,28,0,4.0060105348709324e-09
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,14,0,7.943815415210278e-16
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,28,4,8.217034768899067e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,28,3,1.5694184875643657e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,14,1,2.0880075612177934e-20
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,14,2,4.5659592035359434e-20
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,14,3,5.794791988256025e-19
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,21,2,5.680324947367663e-11
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,21,4,1.2950953366677034e-09
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,14,4,2.230273109495805e-18
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,21,0,3.899861135125964e-11
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,3,0,3.0003648572442455e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,21,1,1.8443097710380552e-11
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,21,3,5.326872130014587e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,3,2,8.047999300679009e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,3,1,2.0313388785543064e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,0,2,0.8681494026062985
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,3,4,5.337501789396016e-11
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,0,0,0.9967693627451334
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,0,1,0.8300809377009765
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,0,4,0.7065018524230195
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,7,2,1.9777650260657258e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,7,0,1.4781219148685458e-07
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,fa,3,3,4.167368439971222e-09
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,7,3,2.357483183410359e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,0,3,0.6648371231329653
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,7,1,5.612638778568332e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,7,4,3.3424587303012116e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,28,3,3.1711874021483795e-07
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,28,2,5.076752006797729e-07
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,28,1,8.064498362337263e-07
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,28,0,2.474782570601571e-05
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,28,4,3.3933088045088313e-07
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,14,1,6.731899621739045e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,14,0,4.69624642914226e-07
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,14,3,1.5272610786746716e-11
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,21,1,1.1423577311100384e-07
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,14,2,7.621317301005749e-11
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,21,2,3.6236629933498567e-08
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,14,4,1.289214475038944e-11
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,21,3,3.6236629933498567e-08
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,21,0,3.3954011943917676e-06
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,3,3,1.295110494327283e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,3,2,8.701931395746895e-11
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,21,4,6.224096070792814e-08
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,3,1,1.9206928205298198e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,3,0,9.477415879931599e-09
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,0,0,0.6414755997056896
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,md,3,4,3.9557236199476453e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,0,3,0.6472839442445886
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,7,2,3.249464585346491e-12
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,0,1,0.9709306192108572
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,0,2,0.8111894453413765
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,7,1,3.2470716153932716e-24
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,7,0,3.04793022814063e-12
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,0,4,0.5790896324861969
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,7,4,6.963001597311851e-12
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,7,3,5.075644298024265e-12
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,28,2,4.155016960655095e-08
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,28,3,2.8874877211491212e-08
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,28,0,5.5433239026536494e-08
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,28,1,6.396674744175427e-08
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,28,4,3.3415557242377274e-08
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,14,2,1.301015885532024e-18
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,14,1,7.126565081602897e-19
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,14,0,1.045595947586463e-18
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,21,0,1.8576390479583516e-08
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,21,2,5.297808868184494e-09
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,14,4,1.7395680890603113e-13
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,3,0,1.092659724386309e-10
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,14,3,9.384811005893568e-14
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,21,3,6.243603897208754e-09
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,21,1,1.0175148084624657e-08
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,3,1,7.431856000308114e-12
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,3,2,1.94637189909822e-12
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,21,4,9.384020170416095e-09
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,0,2,0.8364005718843063
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,3,4,6.998089200215084e-12
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,ad,3,3,2.4897479799288886e-12
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,0,1,0.7799516877664605
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,0,3,0.7368194410491711
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,0,0,0.712530033811066
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,0,4,0.7799516877664605
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,7,1,0.028302278364535315
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,7,0,0.7961669680614375
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,7,2,0.0002258978838053323
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,7,4,4.089136414380659e-06
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,7,3,2.0030143685551345e-05
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,28,2,0.018210359281379977
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,28,4,0.0006788368799283726
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,28,0,0.6588175422009526
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,28,3,0.0021750463310654974
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,28,1,0.2168119605564217
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,21,0,0.8011531315618792
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,14,0,0.9282504294311605
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,14,2,0.000701441869387281
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,14,4,3.4592754500192706e-06
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,14,1,0.06792803911933847
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,14,3,1.7909366851661598e-05
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,21,1,0.07339589914642462
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,3,0,0.24395298785414055
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,21,3,0.00018512647633304175
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,21,4,0.00031662895514013593
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,3,2,1.3185877897554543e-06
+CST_MOp-int-py_ipsilesional_CCasROA,fa,0,1,0.23894197731944342
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,21,2,0.0008358696135523793
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,3,4,4.5755342676364076e-07
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,3,1,0.0001417739124330831
+CST_MOp-int-py_contralesional_selfdrawnROA+CCcut,rd,3,3,2.9082582519725636e-07
+CST_MOp-int-py_ipsilesional_CCasROA,fa,0,2,0.3802237792019264
+CST_MOp-int-py_ipsilesional_CCasROA,fa,0,0,0.1258361533111653
+CST_MOp-int-py_ipsilesional_CCasROA,fa,0,3,0.37738679661975383
+CST_MOp-int-py_ipsilesional_CCasROA,fa,0,4,0.26792962548615556
+CST_MOp-int-py_ipsilesional_CCasROA,fa,7,1,2.719338329701771e-16
+CST_MOp-int-py_ipsilesional_CCasROA,fa,7,2,4.6662713413237454e-15
+CST_MOp-int-py_ipsilesional_CCasROA,fa,7,3,5.750630465528921e-08
+CST_MOp-int-py_ipsilesional_CCasROA,fa,7,4,1.0473593070037548e-07
+CST_MOp-int-py_ipsilesional_CCasROA,fa,7,0,4.445609370215736e-17
+CST_MOp-int-py_ipsilesional_CCasROA,fa,28,1,1.509535637011428e-07
+CST_MOp-int-py_ipsilesional_CCasROA,fa,28,2,2.7712798270393877e-05
+CST_MOp-int-py_ipsilesional_CCasROA,fa,28,4,1.5640097755189407e-05
+CST_MOp-int-py_ipsilesional_CCasROA,fa,14,0,8.231590930799944e-08
+CST_MOp-int-py_ipsilesional_CCasROA,fa,14,1,9.792157407029736e-14
+CST_MOp-int-py_ipsilesional_CCasROA,fa,14,3,8.306283867127183e-14
+CST_MOp-int-py_ipsilesional_CCasROA,fa,28,0,3.468570919623807e-05
+CST_MOp-int-py_ipsilesional_CCasROA,fa,14,4,2.074573097025061e-13
+CST_MOp-int-py_ipsilesional_CCasROA,fa,14,2,5.163173704425935e-14
+CST_MOp-int-py_ipsilesional_CCasROA,fa,28,3,2.0859862014554932e-05
+CST_MOp-int-py_ipsilesional_CCasROA,fa,21,0,0.0001330148104655398
+CST_MOp-int-py_ipsilesional_CCasROA,fa,21,3,1.7429042175416105e-06
+CST_MOp-int-py_ipsilesional_CCasROA,fa,21,4,1.7429042175416105e-06
+CST_MOp-int-py_ipsilesional_CCasROA,fa,21,2,4.753860185359958e-06
+CST_MOp-int-py_ipsilesional_CCasROA,fa,3,3,3.4873139932717726e-10
+CST_MOp-int-py_ipsilesional_CCasROA,fa,3,0,2.455340818765094e-07
+CST_MOp-int-py_ipsilesional_CCasROA,fa,3,2,5.5998273842818325e-11
+CST_MOp-int-py_ipsilesional_CCasROA,fa,3,4,3.5917407752980167e-09
+CST_MOp-int-py_ipsilesional_CCasROA,fa,3,1,8.47264160545123e-11
+CST_MOp-int-py_ipsilesional_CCasROA,fa,21,1,1.5018245380242857e-05
+CST_MOp-int-py_ipsilesional_CCasROA,md,0,3,0.6712776540060366
+CST_MOp-int-py_ipsilesional_CCasROA,md,0,2,0.7245922522361703
+CST_MOp-int-py_ipsilesional_CCasROA,md,0,1,0.7670194178379507
+CST_MOp-int-py_ipsilesional_CCasROA,md,0,0,0.6596401358072022
+CST_MOp-int-py_ipsilesional_CCasROA,md,7,1,2.520209273141326e-07
+CST_MOp-int-py_ipsilesional_CCasROA,md,7,2,6.687631754921654e-08
+CST_MOp-int-py_ipsilesional_CCasROA,md,7,0,2.1172688003999105e-06
+CST_MOp-int-py_ipsilesional_CCasROA,md,0,4,0.642337957711423
+CST_MOp-int-py_ipsilesional_CCasROA,md,7,4,3.831695796659148e-08
+CST_MOp-int-py_ipsilesional_CCasROA,md,7,3,4.2430441891990546e-08
+CST_MOp-int-py_ipsilesional_CCasROA,md,28,0,0.0005362188955488802
+CST_MOp-int-py_ipsilesional_CCasROA,md,28,1,5.368499411047397e-06
+CST_MOp-int-py_ipsilesional_CCasROA,md,14,0,1.6163721205542695e-06
+CST_MOp-int-py_ipsilesional_CCasROA,md,28,2,9.191459673479799e-07
+CST_MOp-int-py_ipsilesional_CCasROA,md,14,2,5.7561732346667864e-11
+CST_MOp-int-py_ipsilesional_CCasROA,md,28,4,1.8659975805897508e-06
+CST_MOp-int-py_ipsilesional_CCasROA,md,28,3,1.1170681243319252e-06
+CST_MOp-int-py_ipsilesional_CCasROA,md,14,3,2.272960242721459e-11
+CST_MOp-int-py_ipsilesional_CCasROA,md,14,1,2.9249941326108267e-09
+CST_MOp-int-py_ipsilesional_CCasROA,md,21,0,0.0007955038346088991
+CST_MOp-int-py_ipsilesional_CCasROA,md,14,4,3.3398648061480274e-11
+CST_MOp-int-py_ipsilesional_CCasROA,md,3,0,0.6578757109438582
+CST_MOp-int-py_ipsilesional_CCasROA,md,21,2,1.865849396298383e-06
+CST_MOp-int-py_ipsilesional_CCasROA,md,21,1,1.5981880265602324e-05
+CST_MOp-int-py_ipsilesional_CCasROA,md,3,2,0.0340354954484437
+CST_MOp-int-py_ipsilesional_CCasROA,md,21,3,6.134177817980685e-07
+CST_MOp-int-py_ipsilesional_CCasROA,md,21,4,5.320400799083432e-07
+CST_MOp-int-py_ipsilesional_CCasROA,md,3,1,0.24395298785414055
+CST_MOp-int-py_ipsilesional_CCasROA,ad,0,0,0.42327895284543304
+CST_MOp-int-py_ipsilesional_CCasROA,md,3,4,0.001576994931999327
+CST_MOp-int-py_ipsilesional_CCasROA,ad,0,1,0.553481194693795
+CST_MOp-int-py_ipsilesional_CCasROA,ad,0,4,0.3655488331622706
+CST_MOp-int-py_ipsilesional_CCasROA,md,3,3,0.004860008438019777
+CST_MOp-int-py_ipsilesional_CCasROA,ad,0,2,0.575123504757004
+CST_MOp-int-py_ipsilesional_CCasROA,ad,7,2,4.128814490945152e-15
+CST_MOp-int-py_ipsilesional_CCasROA,ad,0,3,0.5165944242175613
+CST_MOp-int-py_ipsilesional_CCasROA,ad,7,3,4.145405920580635e-16
+CST_MOp-int-py_ipsilesional_CCasROA,ad,7,0,6.112000710558211e-09
+CST_MOp-int-py_ipsilesional_CCasROA,ad,7,1,1.8346780757707184e-09
+CST_MOp-int-py_ipsilesional_CCasROA,ad,7,4,2.2236090311834603e-10
+CST_MOp-int-py_ipsilesional_CCasROA,ad,28,0,1.4757763707561764e-05
+CST_MOp-int-py_ipsilesional_CCasROA,ad,28,1,6.619892583003033e-07
+CST_MOp-int-py_ipsilesional_CCasROA,ad,14,2,2.373438640547733e-12
+CST_MOp-int-py_ipsilesional_CCasROA,ad,28,2,1.8345478882228857e-07
+CST_MOp-int-py_ipsilesional_CCasROA,ad,28,4,1.5974097326535928e-07
+CST_MOp-int-py_ipsilesional_CCasROA,ad,14,3,2.373438640547733e-12
+CST_MOp-int-py_ipsilesional_CCasROA,ad,28,3,2.2551783581460207e-07
+CST_MOp-int-py_ipsilesional_CCasROA,ad,14,1,9.32069452197944e-12
+CST_MOp-int-py_ipsilesional_CCasROA,ad,14,4,2.5144966773828246e-12
+CST_MOp-int-py_ipsilesional_CCasROA,ad,21,1,1.92485412240809e-07
+CST_MOp-int-py_ipsilesional_CCasROA,ad,14,0,2.3003244610040485e-10
+CST_MOp-int-py_ipsilesional_CCasROA,ad,21,0,2.797947592264276e-06
+CST_MOp-int-py_ipsilesional_CCasROA,ad,21,2,8.444502930619876e-08
+CST_MOp-int-py_ipsilesional_CCasROA,ad,21,4,2.0908615962796287e-08
+CST_MOp-int-py_ipsilesional_CCasROA,ad,3,0,0.00040243139233395886
+CST_MOp-int-py_ipsilesional_CCasROA,ad,3,4,1.0969983331149912e-07
+CST_MOp-int-py_ipsilesional_CCasROA,ad,21,3,3.099633103003526e-08
+CST_MOp-int-py_ipsilesional_CCasROA,ad,3,1,2.3988245262345545e-06
+CST_MOp-int-py_ipsilesional_CCasROA,ad,3,3,2.0134755777211759e-07
+CST_MOp-int-py_ipsilesional_CCasROA,rd,0,0,0.7731412889016522
+CST_MOp-int-py_ipsilesional_CCasROA,rd,0,1,0.6538518987250901
+CST_MOp-int-py_ipsilesional_CCasROA,rd,7,0,0.2818061253430797
+CST_MOp-int-py_ipsilesional_CCasROA,rd,0,2,0.6083170960020869
+CST_MOp-int-py_ipsilesional_CCasROA,rd,7,2,0.0016109734978095058
+CST_MOp-int-py_ipsilesional_CCasROA,rd,7,1,0.03760714156607964
+CST_MOp-int-py_ipsilesional_CCasROA,ad,3,2,5.234537511347694e-07
+CST_MOp-int-py_ipsilesional_CCasROA,rd,0,3,0.6195683106495844
+CST_MOp-int-py_ipsilesional_CCasROA,rd,7,4,3.49638412249039e-05
+CST_MOp-int-py_ipsilesional_CCasROA,rd,7,3,0.0003059176012212371
+CST_MOp-int-py_ipsilesional_CCasROA,rd,0,4,0.7487422650035699
+CST_MOp-int-py_ipsilesional_CCasROA,rd,28,0,0.40908799530688
+CST_MOp-int-py_ipsilesional_CCasROA,rd,28,3,0.0003647358909846503
+CST_MOp-int-py_ipsilesional_CCasROA,rd,28,4,0.0002456487622420958
+CST_MOp-int-py_ipsilesional_CCasROA,rd,14,2,5.238640535691642e-05
+CST_MOp-int-py_ipsilesional_CCasROA,rd,28,2,0.0007451886213481263
+CST_MOp-int-py_ipsilesional_CCasROA,rd,14,1,0.00852643429945142
+CST_MOp-int-py_ipsilesional_CCasROA,rd,14,0,0.07743352423914594
+CST_MOp-int-py_ipsilesional_CCasROA,rd,14,4,2.5091140808761235e-06
+CST_MOp-int-py_ipsilesional_CCasROA,rd,21,3,0.0006850032079477505
+CST_MOp-int-py_ipsilesional_CCasROA,rd,14,3,4.692496077604898e-06
+CST_MOp-int-py_ipsilesional_CCasROA,rd,28,1,0.01950604834249059
+CST_MOp-int-py_ipsilesional_CCasROA,rd,21,1,0.03403787084920296
+CST_MOp-int-py_ipsilesional_CCasROA,rd,21,0,0.2299709836462147
+CST_MOp-int-py_ipsilesional_CCasROA,rd,3,1,0.11859063388229475
+CST_MOp-int-py_ipsilesional_CCasROA,rd,21,4,0.0005889128132820826
+CST_MOp-int-py_ipsilesional_CCasROA,rd,3,0,0.09961838950761613
+CST_MOp-int-py_ipsilesional_CCasROA,rd,3,2,0.3597757996556247
+CST_MOp-int-py_ipsilesional_CCcut,fa,0,0,0.12290376450092352
+CST_MOp-int-py_ipsilesional_CCasROA,rd,21,2,0.0022692016231202015
+CST_MOp-int-py_ipsilesional_CCcut,fa,0,2,0.41150546375833685
+CST_MOp-int-py_ipsilesional_CCasROA,rd,3,3,0.9828488186416624
+CST_MOp-int-py_ipsilesional_CCcut,fa,7,0,2.87422059807238e-17
+CST_MOp-int-py_ipsilesional_CCcut,fa,0,1,0.25775634137498415
+CST_MOp-int-py_ipsilesional_CCcut,fa,0,3,0.40579410281305606
+CST_MOp-int-py_ipsilesional_CCcut,fa,7,1,3.9781589170461105e-16
+CST_MOp-int-py_ipsilesional_CCcut,fa,0,4,0.2948654741307606
+CST_MOp-int-py_ipsilesional_CCcut,fa,7,4,1.3400904912157862e-07
+CST_MOp-int-py_ipsilesional_CCcut,fa,7,2,6.991074205274752e-15
+CST_MOp-int-py_ipsilesional_CCasROA,rd,3,4,0.5732756812011429
+CST_MOp-int-py_ipsilesional_CCcut,fa,7,3,7.031633284720682e-08
+CST_MOp-int-py_ipsilesional_CCcut,fa,28,1,1.989510883587572e-07
+CST_MOp-int-py_ipsilesional_CCcut,fa,28,2,4.0976917972095204e-05
+CST_MOp-int-py_ipsilesional_CCcut,fa,28,4,1.9698508127634045e-05
+CST_MOp-int-py_ipsilesional_CCcut,fa,14,0,1.4782401618235878e-09
+CST_MOp-int-py_ipsilesional_CCcut,fa,28,0,3.468570919623807e-05
+CST_MOp-int-py_ipsilesional_CCcut,fa,14,4,2.0961014230777916e-13
+CST_MOp-int-py_ipsilesional_CCcut,fa,14,3,8.728669441801526e-14
+CST_MOp-int-py_ipsilesional_CCcut,fa,28,3,1.9698508127634045e-05
+CST_MOp-int-py_ipsilesional_CCcut,fa,14,1,5.916439401804018e-14
+CST_MOp-int-py_ipsilesional_CCcut,fa,21,1,5.41765434519737e-06
+CST_MOp-int-py_ipsilesional_CCcut,fa,3,0,1.7541894426061814e-07
+CST_MOp-int-py_ipsilesional_CCcut,fa,14,2,3.412878845825961e-14
+CST_MOp-int-py_ipsilesional_CCcut,fa,21,2,4.168376188802472e-06
+CST_MOp-int-py_ipsilesional_CCcut,fa,21,0,8.474732130511848e-05
+CST_MOp-int-py_ipsilesional_CCcut,fa,3,1,3.759530274647814e-11
+CST_MOp-int-py_ipsilesional_CCcut,fa,3,4,2.0109536692216433e-09
+CST_MOp-int-py_ipsilesional_CCcut,fa,21,3,1.3245625555324727e-06
+CST_MOp-int-py_ipsilesional_CCcut,md,0,0,0.6712776540060366
+CST_MOp-int-py_ipsilesional_CCcut,md,0,2,0.8225948668568515
+CST_MOp-int-py_ipsilesional_CCcut,fa,21,4,1.5199551771934437e-06
+CST_MOp-int-py_ipsilesional_CCcut,fa,3,2,2.1306268010219493e-11
+CST_MOp-int-py_ipsilesional_CCcut,md,0,3,0.7609120531063917
+CST_MOp-int-py_ipsilesional_CCcut,fa,3,3,1.4787409382007509e-10
+CST_MOp-int-py_ipsilesional_CCcut,md,7,2,6.359958382568591e-08
+CST_MOp-int-py_ipsilesional_CCcut,md,0,4,0.6538518987250901
+CST_MOp-int-py_ipsilesional_CCcut,md,0,1,0.9234495151899437
+CST_MOp-int-py_ipsilesional_CCcut,md,7,0,2.2134549772669163e-06
+CST_MOp-int-py_ipsilesional_CCcut,md,7,4,3.286278535667718e-08
+CST_MOp-int-py_ipsilesional_CCcut,md,7,1,2.2888212135851663e-07
+CST_MOp-int-py_ipsilesional_CCcut,md,7,3,3.286278535667718e-08
+CST_MOp-int-py_ipsilesional_CCcut,md,28,0,0.0006788368799283726
+CST_MOp-int-py_ipsilesional_CCcut,md,28,1,5.70470371675813e-06
+CST_MOp-int-py_ipsilesional_CCcut,md,28,2,9.810359809186276e-07
+CST_MOp-int-py_ipsilesional_CCcut,md,28,3,9.810359809186276e-07
+CST_MOp-int-py_ipsilesional_CCcut,md,14,2,3.5277226158370883e-11
+CST_MOp-int-py_ipsilesional_CCcut,md,14,0,1.4317973005209932e-06
+CST_MOp-int-py_ipsilesional_CCcut,md,14,1,1.5334166307350763e-09
+CST_MOp-int-py_ipsilesional_CCcut,md,28,4,1.3556777230222647e-06
+CST_MOp-int-py_ipsilesional_CCcut,md,14,3,1.6302240386294537e-11
+CST_MOp-int-py_ipsilesional_CCcut,md,21,0,0.0009686498796891668
+CST_MOp-int-py_ipsilesional_CCcut,md,21,2,1.865849396298383e-06
+CST_MOp-int-py_ipsilesional_CCcut,md,21,4,5.713337643306774e-07
+CST_MOp-int-py_ipsilesional_CCcut,md,21,3,7.067277461552354e-07
+CST_MOp-int-py_ipsilesional_CCcut,md,3,0,0.6089030723774934
+CST_MOp-int-py_ipsilesional_CCcut,md,3,1,0.20161992074184587
+CST_MOp-int-py_ipsilesional_CCcut,md,21,1,1.5018245380242857e-05
+CST_MOp-int-py_ipsilesional_CCcut,md,3,2,0.02991266870274125
+CST_MOp-int-py_ipsilesional_CCcut,md,3,4,0.0012804687535833102
+CST_MOp-int-py_ipsilesional_CCcut,md,14,4,2.8331234754991616e-11
+CST_MOp-int-py_ipsilesional_CCcut,md,3,3,0.0031393526806023832
+CST_MOp-int-py_ipsilesional_CCcut,ad,0,3,0.630909336085334
+CST_MOp-int-py_ipsilesional_CCcut,ad,7,0,5.198711011295194e-09
+CST_MOp-int-py_ipsilesional_CCcut,ad,0,0,0.4860227020633764
+CST_MOp-int-py_ipsilesional_CCcut,ad,0,2,0.7066564001558109
+CST_MOp-int-py_ipsilesional_CCcut,ad,0,1,0.7609120531063917
+CST_MOp-int-py_ipsilesional_CCcut,ad,7,3,3.2849662878000435e-16
+CST_MOp-int-py_ipsilesional_CCcut,ad,7,1,2.2899158943381574e-09
+CST_MOp-int-py_ipsilesional_CCcut,ad,7,2,2.4591233227074694e-15
+CST_MOp-int-py_ipsilesional_CCcut,ad,0,4,0.4516297051510624
+CST_MOp-int-py_ipsilesional_CCcut,ad,7,4,1.8650098361629676e-10
+CST_MOp-int-py_ipsilesional_CCcut,ad,28,0,2.0859862014554932e-05
+CST_MOp-int-py_ipsilesional_CCcut,ad,14,0,2.3003244610040485e-10
+CST_MOp-int-py_ipsilesional_CCcut,ad,28,4,1.4902409275852302e-07
+CST_MOp-int-py_ipsilesional_CCcut,ad,28,2,1.7120134751003934e-07
+CST_MOp-int-py_ipsilesional_CCcut,ad,28,3,1.9655403227306676e-07
+CST_MOp-int-py_ipsilesional_CCcut,ad,28,1,7.0712337049839e-07
+CST_MOp-int-py_ipsilesional_CCcut,ad,14,2,1.8828134988229766e-12
+CST_MOp-int-py_ipsilesional_CCcut,ad,14,3,1.6763119873298386e-12
+CST_MOp-int-py_ipsilesional_CCcut,ad,21,1,1.659787824227761e-07
+CST_MOp-int-py_ipsilesional_CCcut,ad,14,4,1.995224426673739e-12
+CST_MOp-int-py_ipsilesional_CCcut,ad,14,1,6.278179856822323e-12
+CST_MOp-int-py_ipsilesional_CCcut,ad,21,3,3.099633103003526e-08
+CST_MOp-int-py_ipsilesional_CCcut,ad,21,0,1.0760763657639702e-06
+CST_MOp-int-py_ipsilesional_CCcut,ad,21,2,6.224096070792814e-08
+CST_MOp-int-py_ipsilesional_CCcut,ad,21,4,1.93147776749957e-08
+CST_MOp-int-py_ipsilesional_CCcut,ad,3,0,0.0003769996264718058
+CST_MOp-int-py_ipsilesional_CCcut,ad,3,1,2.6099369008813884e-06
+CST_MOp-int-py_ipsilesional_CCcut,ad,3,3,1.5236109598872112e-07
+CST_MOp-int-py_ipsilesional_CCcut,ad,3,2,5.005305092830807e-07
+CST_MOp-int-py_ipsilesional_CCcut,rd,0,1,0.7306051961095266
+CST_MOp-int-py_ipsilesional_CCcut,ad,3,4,1.0969983331149912e-07
+CST_MOp-int-py_ipsilesional_CCcut,rd,0,0,0.8917210827871489
+CST_MOp-int-py_ipsilesional_CCcut,rd,7,0,0.27383053337973917
+CST_MOp-int-py_ipsilesional_CCcut,rd,0,4,0.7915903369969958
+CST_MOp-int-py_ipsilesional_CCcut,rd,7,1,0.050053991105938486
+CST_MOp-int-py_ipsilesional_CCcut,rd,7,3,0.0002590733210015766
+CST_MOp-int-py_ipsilesional_CCcut,rd,0,2,0.677126328466961
+CST_MOp-int-py_ipsilesional_CCcut,rd,7,2,0.0018148311852722544
+CST_MOp-int-py_ipsilesional_CCcut,rd,0,3,0.642337957711423
+CST_MOp-int-py_ipsilesional_CCcut,rd,7,4,2.9865432951511667e-05
+CST_MOp-int-py_ipsilesional_CCcut,rd,28,0,0.4617851554209389
+CST_MOp-int-py_ipsilesional_CCcut,rd,28,3,0.0003647358909846503
+CST_MOp-int-py_ipsilesional_CCcut,rd,28,2,0.0005895387478634232
+CST_MOp-int-py_ipsilesional_CCcut,rd,14,1,0.006076599978777271
+CST_MOp-int-py_ipsilesional_CCcut,rd,14,0,0.06598763596476606
+CST_MOp-int-py_ipsilesional_CCcut,rd,28,1,0.01529552615277687
+CST_MOp-int-py_ipsilesional_CCcut,rd,28,4,0.00012652102983064212
+CST_MOp-int-py_ipsilesional_CCcut,rd,14,2,4.8888194387503974e-05
+CST_MOp-int-py_ipsilesional_CCcut,rd,21,1,0.04591764185642629
+CST_MOp-int-py_ipsilesional_CCcut,rd,21,0,0.24634374906517598
+CST_MOp-int-py_ipsilesional_CCcut,rd,21,2,0.0024855694231814764
+CST_MOp-int-py_ipsilesional_CCcut,rd,3,0,0.10503704444494219
+CST_MOp-int-py_ipsilesional_CCcut,rd,14,3,3.3062061385463843e-06
+CST_MOp-int-py_ipsilesional_CCcut,rd,14,4,1.552442251558765e-06
+CST_MOp-int-py_ipsilesional_CCcut,rd,3,1,0.13126744018203296
+CST_MOp-int-py_ipsilesional_CCcut,rd,21,4,0.00039049757650010797
+CST_MOp-int-py_ipsilesional_CCcut,rd,3,2,0.39221937104185767
+CST_MOp-int-py_ipsilesional_CCcut,rd,21,3,0.0006514618522230931
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,0,2,0.36823864819404306
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,0,0,0.12777979853751106
+CST_MOp-int-py_ipsilesional_CCcut,rd,3,4,0.5969179353837109
+CST_MOp-int-py_ipsilesional_CCcut,rd,3,3,0.9759901213554002
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,0,3,0.36478388095996894
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,7,0,5.903493640431905e-17
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,0,4,0.2604311794743454
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,7,1,4.2011929612015723e-16
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,0,1,0.2523256989493292
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,7,2,6.544974301060042e-15
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,7,3,7.771794383476194e-08
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,7,4,9.485080480829268e-08
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,28,0,4.330449255534763e-05
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,28,2,2.931905485009555e-05
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,28,1,2.0060706446968955e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,28,4,1.6572582249997145e-05
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,14,0,9.840122140890123e-08
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,14,2,5.215458151619752e-14
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,14,1,9.31162370057265e-14
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,28,3,2.3381010306716613e-05
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,21,1,1.700427810832355e-05
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,21,0,0.0002426481965977448
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,14,4,1.8514352464100866e-13
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,21,3,1.7429042175416105e-06
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,14,3,7.986669808429627e-14
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,3,0,3.3453122707950243e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,21,2,7.487690531921573e-06
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,21,4,1.7429042175416105e-06
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,3,1,7.856969537994749e-11
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,3,2,4.5627766547927e-11
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,0,2,0.742680545826637
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,3,4,3.2102213012875634e-09
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,0,3,0.6888819644979249
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,fa,3,3,2.8161873699638677e-10
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,0,1,0.7731412889016522
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,0,4,0.6195683106495844
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,0,0,0.642337957711423
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,7,0,2.8848661904289037e-06
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,7,4,4.2430441891990546e-08
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,7,2,6.687631754921654e-08
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,7,1,3.2018512819690956e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,7,3,4.2430441891990546e-08
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,28,0,0.000647760824795384
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,28,1,4.752118437671599e-06
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,28,3,9.191459673479799e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,28,2,9.810359809186276e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,14,1,3.389873152857414e-09
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,14,2,6.413298458900128e-11
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,28,4,1.541218665829081e-06
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,14,3,2.1508192969153668e-11
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,14,0,2.610466042206326e-06
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,21,1,1.2448668335918824e-05
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,21,3,7.583705801101227e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,3,0,0.6703629149586097
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,21,0,0.0008358696135523793
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,21,2,1.6277645655070333e-06
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,14,4,2.8331234754991616e-11
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,21,4,5.713337643306774e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,3,2,0.02926903902520356
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,3,3,0.003605532163043398
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,3,1,0.21403223584809095
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,md,3,4,0.0014429169268530904
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,0,1,0.5916133573443063
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,0,0,0.43261150080123134
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,0,2,0.553481194693795
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,0,3,0.5165944242175613
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,7,1,2.050021731388719e-09
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,7,2,5.56511188804299e-15
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,7,0,4.418744296389503e-09
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,0,4,0.39599798372574757
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,7,3,5.512117573818145e-16
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,7,4,2.2236090311834603e-10
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,28,0,1.5640097755189407e-05
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,28,1,6.196378009069319e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,14,1,1.1030114867044037e-11
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,28,4,1.390041130925525e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,14,0,4.5246171211023517e-10
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,28,2,1.7120134751003934e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,28,3,2.415054555505831e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,14,3,2.114211121915038e-12
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,21,3,3.099633103003526e-08
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,14,2,2.373438640547733e-12
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,21,0,3.1978906401178975e-06
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,21,1,1.7875772757449873e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,21,4,2.0908615962796287e-08
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,21,2,8.444502930619876e-08
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,14,4,2.240150025960485e-12
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,3,1,2.2041600353178796e-06
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,3,3,1.922407670721912e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,0,0,0.7977666173265097
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,3,2,3.820246361807711e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,3,4,1.26338691629217e-07
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,ad,3,0,0.0003769996264718058
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,0,1,0.6538518987250901
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,0,4,0.7609120531063917
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,0,2,0.5971578433235208
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,7,1,0.04225229450010209
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,0,3,0.6538518987250901
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,7,3,0.0002986169287888305
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,7,4,2.7589354523813673e-05
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,7,2,0.0017018661529372213
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,7,0,0.2699011442022631
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,28,2,0.0006788368799283726
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,28,4,0.00014035772623849902
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,14,0,0.08301570510476552
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,28,0,0.36014504991293095
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,28,1,0.020183582117739518
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,28,3,0.0002582308353114499
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,14,1,0.009823184513536549
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,14,2,5.808146330366793e-05
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,14,3,4.514566107044597e-06
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,21,0,0.2299709836462147
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,21,4,0.0005597789691194112
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,14,4,2.610466042206326e-06
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,21,3,0.0005889128132820826
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,21,1,0.03289668047100964
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,3,0,0.09108508803251673
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,3,4,0.6089030723774934
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,21,2,0.0024855694231814764
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,3,2,0.3688687408315009
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,3,1,0.12693003151599175
+CST_MOp-int-py_ipsilesional_selfdrawnROA+CCcut,rd,3,3,0.9554267033243347