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1 Introduction

It can be challenging to acquire MR images of consistent quality or to decide
in the screening of large databases, which dataset is of sufficient quality for
further processing. Manual screening without quantitative criteria is strictly
user-dependent and not feasible for huge databases. In contrast to clinical
MRI, in preclinical, animal imaging, there is no consensus on standardization
of quality control measures or categorization of good vs. bad quality images.

The Atlas-based Processing Pipeline for Quality Control of Animal MRI
Data (AIDAqc) was developed for measuring and standardizing the quality
of mouse brain MRI in a dynamic and novel way. AIDAqc works with T2-
weighted MRI (T2w), diffusion-weighted MRI or diffusion tensor imaging
(DTI), and functional MRI (fMRI).

Here, we developed a tool in Python to create a basic overview of MR
image datasets including information about the SNR, temporal SNR (tSNR),
spatial resolution, and movement severity (Figure 1). Currently, this tool
covers T2w, DWI, and fMRI sequences.

I) Parsing:

The user sets the input path and the program will parse iteratively
through all subfolders with a list of all raw MR data or nifti data as its
result. After parsing, only those MR files chosen by the user between
the options of T2w, DTI, or fMRI data are selected, and duplicates
are eliminated. Finally, CSV files are created with the storage path of
every selected file, which will be the input of the next step.

II) Feature calculation:

In this step, SNR is calculated for T2w and DTI images, tSNR, and
movement severity for fMRI images. Mutual information was used as
a metric to calculate movement severity.

III) Outlier detection:

In this step, all of the calculated features will be statistically analyzed
with the help of five methods to identify outliers: One class SVM,
Isolation Forest, Local Outlier Factor, and Elliptic Envelope. In ad-
dition to these, a normal statistical definition of outliers based on the
interquartile range is also used.

3



Figure 1: Pipeline workflow: All of the necessary functions are implemented in this
module, SNR is calculated by using the Chang method and also the more popular
way with the help of defining regions of interest inside and outside of the brain (I)
In this stage, all of the available MR files are parsed and located. (II) In the main
block, here all of the parameters are calculated: SNR, tSNR, and Motion artifacts.
Spatial Resolution, slice thickness, and the number of repetitions are also extracted.
The final output is CSV files located in a folder called “calculated features”. (III)
Five different outlier detectors, each with their own strengths and weaknesses will
determine together as a ”major vote” what image is considered a bad quality image.

2 Installation

1. Download repository by using this link. The project folder contains the
Python scripts necessary for quality measurement.

2. Download & Install Python 3.6 or higher using Anaconda.

3. Importing AIDAqc environment: After the installation of the anaconda
navigator, we have to import the necessary environment. This can
be done by importing the ”aidaqc.yaml” file at the Environments tab,
import and choosing local drive if the file is downloaded from GitHub
to a local drive.

4

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5747/0000/An-automatic-method-for-estimating-noise-induced-signal-variance-in/10.1117/12.596008.short?SSO=1
https://github.com/Aswendt-Lab/AIDAqc
https://www.anaconda.com/distribution/


Figure 2: Importing the environment downloaded from GitHub:
Environments/Import/Local drive .

You can also directly use the Anaconda terminal and type in the following
commands:

cd aidaqc

conda env create --name aidaqc --file=aidaqc.yml

3 Scripts

List of important Scripts:

• ParsingData.py: This is the main and only script for the user. Parser
for identifying the location of T2w, DTI, and fMRI files based on their
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sequence name. By using python ParsingData.py -h a short expla-
nation and a list of available options will appear. An initial path can
be set by the user, the program will use this path as a starting point
and search for MR files in every possible subsequent folder after this
initial path. The second input is a saving path which is the location
where the results should be saved. Figure 7 shows an exemplary use of
the author.

• FeatureCheck.py: After ParsingData.py has been used. CSV files
with the corresponding addresses are created at the defined location
given by the user. These CSV files are used as input for this function.
But be aware that this will happen automatically from the Parsing-
Data.py script this explanation is just for the sake of clarification.

• QC.py: In this script, all the necessary functions are gathered together
which are used for most parts of the other scripts. QC.py can be seen
as the toolbox of the whole pipeline (see 3).
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Figure 3: Exemplary statistical plots. The grey vertical line indicates the threshold
of good vs bad data based on the statistical definition of ”outliers”. The bars with
the red color indicate those files which should be discarded. (a) Histogram of SNR
values of the DTI dataset (b) Histogram of SNR values of the T2w dataset (c)
Histogram of tSNR values of the rsfMRI dataset (d) Histogram of the movement
variability of the rsfMRI dataset, calculated based on mutual information

Attention: All program examples are only listed with the mandatory input
parameters. For more details/help, call python .../python <command> -h.
After a successful download and installation of the necessary libraries, you
can start using the pipeline.
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4 Workflow

Here we want to show how the pipeline can be used. The steps are explained
subsequently.

1) Download the sample data set from GIN via this link.

2) If not already done, download the repository from this link and follow
the installation steps described in the Installation chapter.

Figure 4: Changing the terminal’s directory to the folder containing the Python
scripts downloaded from GitHub.

4) activate the aidaqc environment by typing in the following command
(figure 5).

conda activate aidaqc
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Figure 5: Activating the aidaqc environment. Note that the installation of
anaconda and loading the .yaml file is a prerequisite for this step to work (see 3).

5) After activating the environment it is best to check if the environment
has been installed correctly and to see if there are any errors accruing
in the script. This can be done by using the help option of the function
by using the following command. Additionally, a short explanation can
also be seen.

python ParsingData.py -h
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Figure 6: Using ParsingData.py with the help option.

6) After activating the environment the process can be started by typing
in the following command using the script ParsingData.py.

python ParsingData.py -i <!initial path!> -o <!output path!> -f nifti -s .1

7) After the program has parsed the files and calculated the QC features,
one csv file for each available sequence will be created at the defined
location set by the user. As can be seen in figure 7 the pipeline informs
the user at what stage the pipeline is and how long the processing will
approximately take.
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Figure 7: Structural overview and summary of the pipeline. 1) Searching for all
MR files available 2) Extracting the sequences related to T2w, DTI, and fMRI
measurements from the parsed files 3) Duplicate MR files will be only considered
once and any file address of copies are eliminated. 4) Final CSV files of stage
(I) containing all addresses are created at the defined location. 5) In this part all
of the file addresses of part 4 are processed sequence-based. 6) Some files which
can contain faulty data or faulty structures with incomplete data won’t cause any
problems and will also be saved as an Error data tab in the corresponding CSV file.
7) Same as in 6 faulty fMRI data will be filtered out. 8) Final CSV file in stage
(II) containing all of the calculated QC features is saved in this stage. 9) Finally,
statistical plots are created and the final results of bad quality data are saved in
votings.csv

11



5 FAQ

Q1) How is the SNR of the T2w and DTI sequences calculated?

The SNR is calculated based on two methods, first one is based on
chang method. Simply said this method calculated the SNR without
needing to define regions in the image. The second one uses the stan-
dard way of calculating SNR namely defining regions of interest inside
and outside of the brain. As for this pipeline, the input T2w dataset
usually consists of more the one slice of the brain. For example, we have
an image set with a dimension of 128× 128× 20, the pipeline extracts
the 5 best subsequent slices with the highest average value indicating a
good image of the brain. Usually, the best slices are the middle ones. If
the first or the last slices are the highest slices a warning like in figure
8 will be shown in the terminal and this can indicate a faulty dataset.
The reason for this happening can be two things, either the dataset has
just one slice which makes no problem and the error can be ignored or
the dataset has more slices and it was a faulty measurement where the
position of the slice was selected wrongly.

Figure 8: Warning for a dataset in which the first or the last slices have the most
signal.

Q2) How is the tSNR calculated?

To calculate the temporal signal-to-noise ratio multiple approaches are
available in the literature, most of them are using normal SNR mea-
surements but add some calculation steps to make it legitimate to be
called tSNR. Let’s assume a simple example again to understand how

12

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5747/0000/An-automatic-method-for-estimating-noise-induced-signal-variance-in/10.1117/12.596008.short?SSO=1


it is calculated in this pipeline. Consider an fMRI dataset with dimen-
sions of 128 × 128 × 20 × 500 with 20 being the slices and 500 being
the temporal time points. Similar to the T2w approach, the 4 best
subsequent slices are chosen based on average image intensity. After
this step, SNR is calculated based on this tSNR method. Simply said
the tSNR is calculated for each voxel over time, and then it is averaged
for a region in the brain. Note that this region definition is all happen-
ing automatically based on an automatic threshold and an automatic
identification of the center of mass of the image.

tSNR =
µ

σ
=

µ√
1/N

∑N
i=1 (xi − µ)2

(1)

This is done for all voxels of the defined volume, grown from the center
of mass. The final tSNR is the average value of those.

Q3) How is the Movement severity calculated?

Mutual information (MI) was used to calculate the movement severity
in the resting state MR measurements. Check out Mutual information
as an image matching metric to better understand the concept of Mu-
tual information in image analysis. To explain how MI was used in
this pipeline, it’s easier to use our example dataset with a dimension
of 128 × 128 × 20 × 500. The question is how much movement has
happened between the image at T = t and T = t + 1. The four best
slices are chosen based on the approach already explained in Q1 and
Q2. The image of the first time point is then used as the reference
image and all of the following 499 images are compared to the first one
by calculating the MI between them. If the MI is high, it means the
movement was small. If it’s low then the movement was relatively big.
The standard deviation of all the MI values is then used as a metric
for the overall movement severity. So the final output observable in the
CSV file are standard deviation values.

Q4) How does the parsing work in detail?

The parsing technique of this pipeline can be difficult to understand.
With the help of figure 9 it gets clearer how the parsing works.
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Figure 9: In this illustration, three scenarios can be seen. In each scenario the
initial path as used in figure 6 is set to different folders. The colored arrows
are the exact way how the pipeline searches the folders for MR files.
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Q5) Can the pipeline process other sequences as well?

For now, the pipeline can only parse T2w, DTI, and fMRI sequences.
This is done by using the sequence types extracted from the header
information of each measurement. In this pipeline, they are defined
as: [’Dti*’,’EPI’,’RARE’] which are only related to the sequence
type used for the measurement and the names are predefined default
names of Bruker’s ParaVision Software. So it might be possible that
other kinds of measurements use these sequences as well but are not
compatible to be used with this pipeline1. Another problem that might
accrue is that if one of the permitted sequences (T2w, DTI, fMRI) is
measured with multiple echo times, repetition times, separate receiver
channels, repetitions for averaging purposes, or any kind of additional
dimension except Slices, Time and Diffusion directions, the pipeline
will not work. It is planned for the near future to add more features.

Q6) How are the SNR of the T2w and DTI sequences calculated?
The only difference that we have in the DTI scans compared to the
T2w scans, is the dimension of the diffusion directions. Here a small
portion of the images in the diffusion direction is used to calculate the
SNR similar to the T2w approach.

Q7) Why is the pipeline divided into separate stages?

The reason behind this is to increase the stability of the program and to
prevent the need to run the pipeline multiple times from the beginning.
As explained above, separate CSV tables are created in each stage.
Stage (I) is relatively fast and it won’t cause any long waiting periods
to rerun that part if necessary. Stage(II) on the other hand can take
more time, sometimes up to hours to finish, therefore it is possible that
if an error accrues in the plotting part of the code, to simply correct
the error and read the CSV file created from the second stage and to
do the plotting without the need to wait again for the whole pipeline
to run again from the beginning.

Q9) What is meant by the warning: Some faulty files were found:
All faulty files are available in the Errorlist?

With this warning, the pipeline just informs the user that some key
files of the main image file could not be read. These can be one of

1For example Arterial Spin Labeling (ASL) sequences, DCE and DSC sequences, etc.

15



the method, viso parameters, ... files from the Bruker sequence
folder. However, all these files are also listed and saved in a separate
csv file in the output folder.

Q9) After running the pipeline, where can I find the data which
should be excluded?

In the final CSV sheet named voting.csv are all of the data listed
which had at least one vote from the machine-learning outlier detectors
(”Judges”). If all five outlier detectors have voted the Image as an
outlier, it can be said with a high possibility that it is really bad. And
usually based on experience the images with all five detectors voting
for a bad/outlier image are pure noise images or extreme Ghosting
artifacts.

Q10) When running the help option of the function ParsingData.py,
there are other options as well, can you elaborate more about
them?

The -i and -o are self-explanatory. -f can be used if it should check
raw Bruker data or Nifti data. Be aware that the tool is more stable
for only Nifti data. The reading process of raw data can vary a lot
between datasets and is not guaranteed to function for any kind of raw
dataset. -s is a useful flag and it will be only used for processing Nifti
data. Imagine you have your main T2.nii.gz file which you want to pro-
cess with this tool. Also because of some other processing you already
have done, there are lots of irrelevant nii files available that you don’t
want to include in the quality assessment for example T2.mask.nii,
T2.proccesed.nii, T2Mask.seperated.nii, etc. It might even be the rea-
son for ”the error” while using the tool. By using the -s flag you can
set it as -s T2, and the tool will only look/parse for files ending with
*T2.nii.
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Author:
I have designed this pipeline to help me validate all the MR data that

I use for further processing in my project. I was searching for a kind of
standardization to dichotomize MR data into good and bad data. Over time
I found out that this can’t be done as easily as thought. The key point of this
standardization tool is that one realizes good and bad can not be set with
fixed global values of any kind of features like the SNR and as everything in
life is, it should be looked at relatively. If you have any questions regarding
this pipeline, feel free to contact me at:

aref.kalantari-sarcheshmeh@uk-koeln.de

The end
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