
S3 Text: Geometry and software control of a spherical
visual stimulation arena with square LED tiles

originally published as supplementary material to Dehmelt, Meier, Hinz et al.,
bioRxiv 2019, last edited on September 1, 2019

The purpose of this document
During methods development, two major concerns surfaced early on: Drafting the structural parts in
CAD software prior to printing required an exact (or at least approximate) definition of their shape
and location. And displaying visual stimuli in the arena made it necessary to translate the desired
image into accurately timed instructions to each one of the 7,552 individual LEDs, depending
on their actual location in three-dimensional space. We here present a precise solution to both
problems. This document was originally intended to provide new lab members a self-contained
introduction to these ideas, and is thus written in the style of a manual for undergraduates. It
contains a mathematical description of the geometry of the arena architecture, as was used for
printing. It further contains a mathematical description of the position in space of each individual
LED, and the mapping between stimulus space and physical space. Finally, we appended an
example of MATLAB code performing this mapping. A mathematical appendix reviews some of
the concepts underlying coordinate transformations.



S3 Text | Dehmelt, Meier, Hinz et al. 2019 2

Table of contents
1 Geometry of the structural backbone 2

1.1 Cartesian and geographic coordinate systems . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Physical and hardware constraints on arena size . . . . . . . . . . . . . . . . . . . . . 5
1.3 Alternative designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Geometry of the LED arrangement 7
2.1 Placement of LED tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Resulting position of individual LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 A note on limitations and artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Mapping visual stimulation onto physical space 11
3.1 Moving-bar stimuli in geographic coordinates . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Cropping the shape of moving-bar stimuli . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Mapping individual frame content to LED positions . . . . . . . . . . . . . . . . . . 11
3.4 Surface coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A Mathematical appendix 13
A.1 Vector notation, and user confusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.2 One point, many addresses. Converting between coordinate systems . . . . . . . . . 13
A.3 Unit vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B MATLAB code 17

1 Geometry of the structural backbone
1.1 Cartesian and geographic coordinate systems
A position in three-dimensional space can be described by an infinite variety of coordinate systems,
affording us the privilege of picking whichever we find the most convenient. Throughout this
manuscript, we will be using either Cartesian or geographic coordinates. The former streamlines
the description of simple translations as well as the shape of ”flat” surfaces, whereas the latter
efficiently captures the geometry of a sphere surface with just two of its three coordinates1. Fig. 1
illustrates both systems, and introduces our convention for the respective coordinates: x, y and z

in the Cartesian system, as well as azimuth α, elevation β and radius r in the geographic system.
It is worth noting that, as opposed to the most common form of polar coordinates, geographic
coordinates assign an elevation of +90° to the ”north pole” of a sphere, and -90° to its ”south pole”,
rather than an inclination from 0° to 180°. The azimuth is the same as for default polar coordinates,
ranging from -180° to +180°.

When we keep using more than one coordinate system at a time, there is always some risk of
confusion. But there are ways to point out that when we wrote down a certain set of coordinates,
we actually had a specific coordinate system in mind. See appendix A.1 for details.

1In fact, we use a specific type of geographic coordinates, known as Up-West-North or UWN geographic coordi-
nates. As zebrafish will virtually always be placed upright into the arena, this system is consistent with a common
way of describing rightward zebrafish eye movement as ”positive”, and leftward movement as ”negative”. Because
many experimenters are used to observing their animals from above, this is otherwise known as the ”clockwise”
notation. Please note that the inverse convention, known as ”counter-clockwise” or even ”mathematically positive”,
is also widespread.



S3 Text | Dehmelt, Meier, Hinz et al. 2019 3

z axis

x axis
y axis

north pole

south pole

centre

z axis

equator

     prime
meridian

  “north”

“west”
 “up”

Figure 1: Choice of coordinate systems. (a) In red, the position of a point can be given in Cartesian coordinates
with x, y, z ∈ ]−∞,∞[. (b) The same point can also be described as sitting on the surface of a sphere centred on
the origin. In one possible incarnation of geograpic coordinates, so-called UWN geographic coordinates, its position
is then given by how far ”up” it is from the sphere centre, how far ”west” it is from the prime meridian, and how far
”north” from the equator. These three coordinates are known as radius r, azimuth α and elevation β.

No matter which coordinate systems we use, and no matter how we present their coordinates in
practice, each point in physical space always has exactly one correct and unambigious2 description
in each system. And we can always unambiguously convert the description of a point p, written
down with respect to one coordinate system, into its description with respect to the other coor-
dinate system. This is rather intuitive: Just because we switch our way of describing positions,
the positions themselves do not change. For instance, the following equations convert geographic
coordinates into Cartesian coordinates without any loss of information:

x = r cosα cosβ

y = r cosα sinβ (1)
z = r sinα

We can also go in the opposite direction, taking a description in Cartesian coordinates and con-
verting it to geographic coordinates:

2There are some exceptions to this rule. In polar coordinate systems, the point of origin can be described by a
radius of zero, and any combination of angles. In geographic coordinates, the poles of a sphere are described by
some fixed radius, an elevation of +90° or −90° respectively, and any azimuth whatsoever. Furthermore, there is
no difference between an azimuth of exactly +180° and one of exactly −180° so we generally limit the azimuth to
α ∈ ]−180, 180] ⊂ R. All of these description are still ”unambiguous”, in that each one of them points to exactly
one point. But they are no longer ”unique”, because we can choose between different ways of a addressing the same
point. Fortunately, none of these exceptions are likely to be relevant in practice.



S3 Text | Dehmelt, Meier, Hinz et al. 2019 4

any parallel

north pole

south pole

centre

-90°

90° 0°

180°

z axis

azimuth α

     prime
meridian

north pole

south pole

centre

z axis

90°

-90°

elevation βequator

0°

  any
meridian

Figure 2: Choice of coordinate systems. (a) The range of azimuth values is α ∈ [−180, 180[. (b) The range of
elevation angles is β ∈ [−90, 90[ and r ∈ [0,∞[.

r =
√
x2 + y2 + z2

α = sin−1 z

r
= sin−1

(
z√

x2 + y2 + z2

)
(2)

β = cos−1
( x

r cosα

)
= cos−1

 x/
√
x2 + y2 + z2

cos
(
sin−1

(
z/
√
x2 + y2 + z2

))


For further details, please refer to appendix A.2. Individual LEDs come arranged on square tiles
(Fig. 6), which in turn are distributed across the spherical arena. To determine the position of each
individual LED, we will need to compare the shape and extent of both ”round” and ”flat” objects in
space. This is where the unit vectors of both coordinate systems come in. The relevant geographic
unit vectors, expressed in Cartesian coordinates, are

uα =
1

r
· ∂

∂α

 x

y

z

 =

 − cosα sinβ

+cosα cosβ

0

 (3)

which is always tangential to a line of longitude, pointing ”westward”, and

uβ =
1

r
· ∂

∂β

 x

y

z

 =

 − sinα cosβ

− sinα sinβ

cosα

 (4)

which is always tangential to a circle of latitude, pointing ”northward”. For an intuition on unit
vectors, as well as a complete mathematical derivation, see appendix A.3. Lines of longitude are also
called ”meridians”, with the ”prime meridian” at α=0 (Fig. 1f). Circles of latitude are sometimes
called ”parallels”; the parallel at β=0 is known as the ”equator” (Fig. 1e).



S3 Text | Dehmelt, Meier, Hinz et al. 2019 5

z axis

x axis
y axis

x direction

y direction
z direction

x direction

y direction
z direction

x direction

y  direction

z direction

north pole

south pole

z axis

  “north”

“west”
 “up”

 “north”

“west” “up”

  “north”

“west”

 “up”

Figure 3: Unit vectors describe the incremental change of coordinates. (a) The direction of unit vectors such as
ux=∂p/∂x is always constant in Cartesian space, regardless of position p, whereas (b) the direction of unit vectors
uα = uα(α, β) = ∂p/∂α and uβ = uβ(α, β) = ∂p/∂β depends on the actual value of both angular coordinates. It is
however independent of radius r. For a detailed explanation, see appendix A.3.

1.2 Physical and hardware constraints on arena size
Our hardware controller and C code can drive up to 240 LED tiles with 64 LEDs each. With these
constraints, we need to identify the optimal size of the arena to build. In the end, the inner edges
of all structural ribs will lie on a sphere with radius RS , a radius we can choose. LED tiles will
be arranged in latitudinal ribbons, and the number of such ribbons depends on the radius of the
sphere. In this section, we will

• Identify a plausible range of radii.

• Choose a compatible number of ribbons.

• Use the number of ribbons to narrow down the radius.

• Add a safety margin to this radius to accomodate unavoidable gaps.

Readers who do not seek details on these estimates can safely skip this section. With dimensions
of 20mm by 20mm, each tile has an area of 400mm2, adding up to 96 000mm2 for all tiles combined.
To optimally cover a sphere with these tiles, said sphere should have a somewhat larger area to
accomodate to square shape of the tiles (which will lead to unavoidable gaps in between them),
as well as the need for structural elements carrying the weight of the assembly. Sphere radius
RS and area AS are linked via AS = 4πR2

S . This imposes a strict lower limit on the sphere
radius, RS > 87.4mm. With a generous margin to account for large and small gaps, imprecise
manufacturing and manual placement, we obtain a more plausible range of RS ∈ [90mm, 110mm].
To further narrow down the radius, we need to select the exact number of ribbons to construct.

The number of ribbons we can fit onto the surface depends on the size of each ribbon and
additional elements such as structural ribs and gaps (Fig. 4). These calculations are simpler if the
radius of the sphere is much larger than the width of the tiles. This is true for very large spheres, or
very narrow tiles. Neither is the case for our arena, but it is a good first estimate. Later on, we will
add an additional margin to the radius. Let us consider the height of our tiles, as they are placed



S3 Text | Dehmelt, Meier, Hinz et al. 2019 6

-β1 

β1 
β5

equator
 (β=0)

z axis 
(β=±90)

north polar gap

south polar gap

sphere
 centre

LED tile
  ribbons structural

   ribs

ribbon tiles per elevation of
no. ribbon tile centre

5 2× 5 β5=62.4

4 2× 9 β4=49.9

3 2× 11 β3=37.6

2 2× 13 β2=25.0

1 2× 14 β1=12.5

0 2× 15 β0=0

−1 2× 14 −β1=−12.5

−2 2× 13 −β2=−25.0

−3 2× 11 −β3=−37.6

−4 2× 8 −β4=−49.9

−5 2× 5 −β5=−62.4

Figure 4: Arrangement of tiles into ribbons of equal elevation. Cross-section of the arena. Values of β have been
rounded to one decimal place.

right above one another along one of the meridians of the sphere. Circumnavigating this meridian
from pole to pole and back again, we would cover an angle of 360°. On this circular trajectory,
we would twice encounter each ribbon of LED tiles and each structural rib, and we would also
encounter any polar holes in the sphere. In our case, there is one large hole of about 30° around
each pole to allow for an optical path to be coupled in. These holes correspond to elevations of
β∈ [−90,−75] and β∈ [75, 90], respectively. Because we plan to arrange all LED tiles symmetrically,
it is sufficient to consider only the trajectory from one pole to the other, corresponding to a 180°
range. If there are no additional gaps, the individual elements then add up as follows:

180° = β̂all tiles + β̂all ribs + β̂hole (5)

= Nribbon · β̂tile + (Nribbon+1) · β̂rib + β̂hole

= Nribbon · 2 sin−1

(
dtile
2RS

)
+ (Nribbon + 1) · 2 sin−1

(
drib
2RS

)
+ 2 sin−1

(
dhole
2RS

)
where β̂ designates the angular size of each element in terms of elevation. We picked a conservative
estimate of the edge of each tile around dtile = 21mm instead of 20mm to account for imprecise
placement, and chose the thickness of structural ribs to be one tenth of that, i.e., drib = 2.1mm.
Substituting the minimum and maximum from the range of plausible radii above, we can solve this
equation twice to find that we could fit either 10, 11 or 12 ribbons. To have an uninterrupted ribbon
of LEDs right around the equator of the sphere, we opted to include an odd number of ribbons
(Nribbon =11), with 5 ribbons above and 5 ribbons below the equator. Based on this number, we
computed a more precise estimate of the optimal sphere radius by numerically solving equation (5),
obtaining RS=101mm.

This radius would be accurate if the horizontal extent of the tiles were much smaller than the
radius of the sphere. However, they are in fact square, and their width is only one order of magnitude
smaller than the approximate diameter of the sphere. This means that tiles facing the sphere centre



S3 Text | Dehmelt, Meier, Hinz et al. 2019 7

0 2 4 6 8 10 12 14 16 18 20
Number of horizontal rows

0

100

200

300

400

500

600

700

Re
qu

ire
d 

nu
m

be
r o

f L
ED

 m
at

ric
es

Figure 5: Relationship between the number of LED ribbons in a given arena design and the total number of LEDs
required for maximum coverage. Figure provided by Julian Hinz.

such that their edges are parallel to the α and β directions have a larger angular size the closer
they are to one of the poles. Thus, estimating their angular size as 2 sin−1(drib/2RS), as we did in
equation (5), is insufficient. To spread out the structural ribs further, Julian Hinz chose to print all
parts scaled by an additional factor of 1.05, effectively increasing the sphere radius to 106.5mm.
This way, the difference in elevation between neighbouring ribbons is the same, no matter whether
we compare the equatorial ribbon to the one below, or the two top-most ribbons to one another.
This extra space is sorely needed for the ribbons near the poles, and is still small enough not to be
too wasteful for nearly equatorial ones. The ”inner” sphere radius computed here corresponds to
the distance between fish and stimulus, although some LEDs (notably those near the centre of the
tiles), are located marginally closer. Where structural and electronic elements protrude from the
arena, the outer perimeter of the sphere is considerably larger, reaching points as far as 150mm.

1.3 Alternative designs
Readers interested in designing larger or smaller spherical arenas may consider how the total number
of LED tiles required to achieve maximum coverage is linked to the number of LED ribbons (Fig. 5).

2 Geometry of the LED arrangement
2.1 Placement of LED tiles
The arrangement of LED tiles into ribbons is shown in Fig. 4, which also lists their respective
elevations. Based on the suspicion that frontal stimuli are more behaviourally relevant to zebrafish
than those in the rear, we chose to align all LED ribbons with the frontal keel to minimise the gaps
there. The first tile of each ribbon is located immediately next to this keel (αC near zero), and each
following tile is placed next to the existing ones, with increasingly large absolute values of azimuth.
Both hemispheres of the arena are populated symmetrically from the keel.



S3 Text | Dehmelt, Meier, Hinz et al. 2019 8

Figure 6: Individual LED position relative to tile centre. Each tile carries 64 individual LEDs in an eight-by-eight
pattern. The position of each individual LED is equal to that of the tile centre, plus a weighted sum of unit
vectors (black) spanning the tile surface. Because each tile faces the centre of the sphere, the increment unit vectors
uα(αC , βC) and uβ(αC , βC) defined at the tile centre, pC = (r, αC , βC), span the tile surface (cf. appendix A.3).
Distance between the centres of nearest neighbours is dLED =2.48mm.

2.2 Resulting position of individual LEDs
Each tile carries 64 individual LEDs arranged in a square eight-by-eight pattern (Fig. 6). From
section 2.1, we already know the position of the centre of each tile. Now we must figure out where
each individual LED is located. Because the tiles are flat and face the sphere centre, all LEDs lie
further away from sphere centre than their tile centre. Their geographic coordinates are non-trivial,
as – seen from the sphere centre – LEDs near the edge of a tile appear closer to their neighbours
than those near the centre of the tile. However, we can compute the exact geographic coordinates
of each individual LEDs by combining the location of the centre of the tile holding them with what
we know about the distribution of LEDs across the flat tile. Because each tile faces the centre of
the sphere, the increment unit vectors uα and uβ , evaluated at the tile centre, span its surface.
Thus, the position of each individual LED held by a tile is equal to that of the tile centre, plus a
weighted sum of these unit vectors (Fig. 6). As illustrated in Fig. 7, we must

1. Convert tile centres from geographic coordinates pC=(RS , αC , βC) to Cartesian pC=(xC , yC , zC).
2. Add scaled versions of the increment unit vectors uα and uβ , also in Cartesian coordinates.
3. Convert the result back to geographic coordinates.

Performing the first and second step, we find that the absolute position pij of each individual LED
in Cartesian three-dimensional space is given by

pij = pC + (i−4.5) dLED · uα(αC , βC) + (j−4.5) dLED · uβ(αC , βC) (6)

where i, j ∈ [1, 8] ⊂ N, and dLED =2.48mm is the distance between the centres of nearest neigh-
bours. With equations (1), (3) and (4), this becomes

pij = RS

cosαC cosβC

cosαC sinβC

sinαC

+(i−4.5) dLED

− cosαC sinβC

cosαC cosβC

0

+(j−4.5) dLED

− sinαC cosβC

− sinα sinβC

cosαC

 (7)

In a third step, we convert these Cartesian coordinates back into geographic coordinates using
equation (2). Fig. 8 reveals the idealised coordinates of all individual LEDs. In the actual process
of construction, deviations on the order of ±1°, especially in αC , are hard to avoid.



S3 Text | Dehmelt, Meier, Hinz et al. 2019 9

(r, α, β)

(r, α, β)

(x, y, z)

(x, y, z)

(r, α, β)

Figure 7: Individual LED coordinates. (Left) We can compute the unknown geographic coordinates of individual
LEDs, in red, from the location of the centre of the tile holding them, in black. (Right) To do so, we must convert
tile centre position to Cartesian coordinates, add scaled versions of the increment unit vectors uα(αC , βC) and
uβ(αC , βC), also in Cartesian coordinates, then convert the result back to geographic coordinates.

2.3 A note on limitations and artifacts
The setup as described above is versatile stimulation arena made from a combination of 3D-printed
parts and relative low-cost products such as the square LED tiles. By its very architecture, it does
however have a number of undesirable properties.

Gaps. Due to the nature of the mathematical challenge of fitting square tiles onto a spherical
surface, gaps in between tiles are unavoidable. Others result from structural elements such as the
”keel” along the prime meridian that does not carry LEDs themselves. The reduced number of
LEDs per unit of surface area leads to lower total luminance of a stimulus presented there, and
the animal might perceive the dark triangles themselves as objects, distracting its attention from
the stimulus itself. Over the course of her thesis project, Rebecca Meier performed several control
experiments, none of which revealed such detrimental effects. She attached hand-crafted shapes
across more densely covered parts of the arena, obscuring existing LEDs with dark triangles or
dark bars assimilating the gaps in between LEDs as well as structural elements. Other control
experiments are in preparation.

Resolution and smoothness. The edges of vertical bars are obviously vertical, but the grid of
LEDs on each tile is not, unless said tile is located on the equator. This leads to a distortion of
the shape of the bar near the poles, where instead of a straight line of LEDs above one another,
it will be represented by a stair-shaped succession of LEDs. This is further aggravated by the
relative low number of LEDs in total, leading to noticeable pixelation of the stimulus. However,
larval zebrafish have poor visual acuity, with an angular resolution of only about 2° (Aristides B.
Arrenberg, personal communication). This makes such limitations unlikely to have an effect for all
but the most extreme stimulus positions. Control experiments pending.

Countermeasures. To alleviate some of these concerns, users may want to consider placing a layer
of diffusors onto the LED layer. In the Arrenberg lab, we have successfully used such diffusors to
stimulate fish under a two-photon microscope, using an arena with significantly fewer LEDs. The
geometry of the sphere, however, makes designing and installing such diffusors non-trivial.



S3 Text | Dehmelt, Meier, Hinz et al. 2019 10

−200 −150 −100 −50 0 50 100 150 200
−80

−60

−40

−20

0

20

40

60

80

azimuth

el
ev
at
io
n

Figure 8: Individual LED positions in geographic coordinates. Each circle represents a single LED. Each cohesive
group of eight-by-eight circles corresponds to the 64 LEDs contained in a single tile. Most of the sphere surface is
densely covered by LEDs, but there are several regions with important gaps. These are generally located in parts
of the visual field suspected to be less behaviourally relevant, but others were simply unavoidable due to mechanical
constraints on the setup. Even where an LED-holding tile is placed, the angular gap between LEDs increases the
closer the tile is to either pole of the sphere. Likewise, nearly triangular gaps in between tiles become more apparent
towards the poles. The left and right hemispheres are symmetrical but for unavoidable mechanical imprecisions
during assembly. Top and bottom hemispheres are almost symmetrical, except for additional tiles added to the +50°
ribbon near the top, one on the left and one on the right. These are absent from the corresponding −50° ribbon near
the bottom, due to physical constraints on our specific setup.



S3 Text | Dehmelt, Meier, Hinz et al. 2019 11

azimuth

el
ev
at
io
n

−180 −90 0 90 180

90

45

0

−45

0 50 100 150 200 250 300 350
−20

0

20

40

60

80

100

120

frame no.

ac
cu

m
ul

at
ed

 d
is

pl
ac

em
en

t

Figure 9: Mapping visual stimuli onto LED space. (a) Visual stimulus in geographic coordinates. (b) Common
sinusoidal velocity profile.

3 Mapping visual stimulation onto physical space
3.1 Moving-bar stimuli in geographic coordinates
Visual stimulation in the Arrenberg lab is often presented in the form of horizontally moving
gratings, i.e., horizontally moving vertical bars of equal width, and distance from one another.
When shown on a flat screen, these are indeed bars of constant width, as measured in millimetres.
On a spherical surface, a pattern resembling a ”beach ball” is used instead, where the width of each
bar still covers a constant angular range; its width as measured in millimetres, however, decreases
towards the poles of the sphere. The shape of such a stimulus, as seen from the centre of the sphere,
is shown in Fig. 9. Note that this stimulus is shown in geographic coordinates, so its ”beach ball”
shape is not immediately apparent. If the poles themselves were covered by LEDs, all bars would
meet there in a single point. In practice, the poles are often left open to couple in an optical path.

3.2 Cropping the shape of moving-bar stimuli
Stimuli can be cropped to be displayed on one of the eight hemispheres only, or on icosahedrally dis-
tributed circular areas equidistantly covering the sphere surface. Code for this cropping is available
separately.

3.3 Mapping individual frame content to LED positions
Knowing what the stimulus should look like to the animal at the centre of the sphere, we still
need to make sure this stimulus is indeed generated by our assembly of LEDs. In other words, we
must translate the desired shape of the stimulus, provided in spatial coordinates using whatever
coordinate system we find convenient, into a set of on-or-off instructions to each individual LEDs
at every point in time. This is akin to mapping the spatial description of the stimulus onto the
spatial coordinates of each LED. To the hardware controller, however, each LED is known by a
systematic address that has little or no relation to its physical location. So we must additionally
create a look-up table that matches each LED address with the corresponding spatial coordinates
of that same LED. Neither of these steps is very complicated from a mathematical point of view,
but it has to be taken with care to avoid a garbled stimulus.



S3 Text | Dehmelt, Meier, Hinz et al. 2019 12

−10
−5

0
5

10

−10

−5

0

5

10
1

1.005

1.01

1.015

1.02

1.025

Figure 10: Fraction of sphere surface covered by a square LED tile. The segment of a sphere surface (shown in colour)
above any perpendicular flat square (shown in grey) can be computed analytically using equation 8. To compute the
effective surface area covered by an LED tile, as seen from the sphere centre, we must not use the the LED tile itself
as the perpendicular square shown here in grey. The square immediately below the surface segment, while located
in the same place as the LED tile, is in fact slightly smaller (cf. Fig. ??).

3.4 Surface coverage
The area of a surface segment delimited by the projection of the edges of a single tile onto the
sphere centre is given by

A(S) =

∮
dA =

+λ∫
−λ

dx

+λ∫
−λ

dy ∥uα × uβ∥ =

+λ∫
−λ

dx

+λ∫
−λ

dy
R2

S

R2
S − x2 − y2

(8)

where (±λ,±λ) is the Cartesion position of the edges of a smaller rectangle, which is the straight
projection of the sphere segment onto the tile,

λ = sin

(
tan−1

(
d

2RS

))
(9)

These equations can be used to estimate the total coverage of the sphere by its square LED tiles.
Pooling over the entire sphere, including all gaps, holes and structural elements, we obtain a coverage
of 66.54%. Locally, coverage is much higher, with the equatorial ribbon reaching 80% if the large
rear hole and structural elements are included, and well above 90% if only the key parts of the
visual field are taken into account.



S3 Text | Dehmelt, Meier, Hinz et al. 2019 13

A Mathematical appendix
A.1 Vector notation, and user confusion
When we keep using more than one coordinate system at a time, there is always some risk of
confusion. But there are ways to point out that, when we wrote down a certain set of coordinates,
we actually had a specific coordinate system in mind:

• Using variables. We can list the coordinates individually, referring to them by their mathe-
matical variable name, such as ”the point identified by r= 5, α= 30 and β =−20”. This is
not a particularly compact, but fairly safe solution. We just have to make sure that different
coordinate systems use different variable names.

• Using words. We can avoid confusion by verbally identifying the coordinate system, as in

”...some point p =

 5

30

−20

 in geographic coordinates...”

In this case, it is particularly important to use an unambiguous name for our coordinate
system; while geographic coordinates are a type of ”polar coordinates”, they are not the
standard type of polar coordinates. Because column vectors take up a lot of space on paper,
we often write them as transposed row vectors instead, such as p = (5, 30,−20)T.

• Using labels. If we need our notation to be compact, we can add labels indicating the coor-
dinate system behind the numbers. For instance, writing [p]G = (5, 30,−20)T instead of just
p, we know that these are geographic coordinates, where r = 5, α= 30 and β =−20. This
is a little tedious, but it can be safer than just writing p = (5, 30,−20)T, which might be
interpreted as x=5, y=30 and z=−20, a very different point in space.

• Using context. For maximum efficiency, we can rely on context alone to provide enough
information for readers to tell the coordinate systems apart. This is what we do in our labs
most of the time, and it turns out to be less confusing than it might seem.

A.2 One point, many addresses. Converting between coordinate systems
No matter which coordinate systems we use, and no matter how we present their coordinates in
practice, each point in physical space always has exactly one correct and unambigious3 description
in each system. And we can always unambiguously convert the description of a point p, written
down with respect to one coordinate system, into its description with respect to the other coor-
dinate system. This is rather intuitive: Just because we switch our way of describing positions,
the positions themselves obviously do not change. For instance, the following equations convert
geographic coordinates [p]G = (r, α, β)T into Cartesian coordinates [p]C = (x, y, z)T without any
loss of information:

x = r cosα cosβ

y = r cosα sinβ (10)
z = r sinα

3There are some exceptions to this rule. In polar coordinate systems, the point of origin can be described by a
radius of zero, and any combination of angles. In geographic coordinates, the poles of a sphere are described by
some fixed radius, an elevation of +90° or −90° respectively, and any azimuth whatsoever. Furthermore, there is
no difference between an azimuth of exactly +180° and one of exactly −180° so we generally limit the azimuth to
α ∈ ]−180, 180] ⊂ R. All of these description are still ”unambiguous”, in that each one of them points to exactly
one point. But they are no longer ”unique”, because we can choose between different ways of a addressing the same
point. Fortunately, none of these exceptions are likely to be relevant in practice.



S3 Text | Dehmelt, Meier, Hinz et al. 2019 14

north pole

south pole

z axis

prime
   meridianmeridians

azimuth α>0 α<0

north pole

south pole

z axis

equator

elevation β>0

elevation β<0

elevation β=0

parallels

Figure 11: UWN geographic coordinates. (a) All points sharing a specific radius r and azimuth α lie on the same
meridian, a hemicircle from pole to pole. Dashed lines indicate negative values of alpha. (b) All points sharing a
specific radius r and elevation β lie on the same parallel, a circle parallel to the equator.

In most cases, both of our coordinate systems can be inferred from context and from the variables
present in the equation. We will thus omit notations like [p]C or [p]G from now on, and write p
instead, whatever the coordinate system used. We can also go in the opposite direction, taking a
description in Cartesian coordinates and converting it to geographic coordinates:

r =
√
x2 + y2 + z2

α = sin−1 z

r
= sin−1

(
z√

x2 + y2 + z2

)
(11)

β = cos−1
( x

r cosα

)
= cos−1

 x/
√
x2 + y2 + z2

cos
(
sin−1

(
z/
√
x2 + y2 + z2

))


This is not a very pretty set of equations, but it gets the job done: If we know the x, y and z

coordinates of a point, we can now compute the equivalent r, α and β coordinates.



S3 Text | Dehmelt, Meier, Hinz et al. 2019 15

A.3 Unit vectors
An intuition for unit vectors

On top of just being alternative addressing systems describing the same points using different
numbers, Cartesian and geographic coordinates differ in more subtle ways. One of these differences
– the so-called unit vectors – become important in section 2.2, where we derive the placement of
individual LEDs relative to the centre of the tile holding them. For now, let’s revisit the basics.

In Cartesian coordinates, incremental changes of just one variable always move a point by a fixed
distance in a fixed direction. Imagine your setup is contained in a big cardboard box. Maybe your
y axis points from the left end of your setup to the right end of your setup. Then, increasing the
y coordinate of a point by a tiny bit, (e.g., from 7 to 7.1) will always move your point a tiny bit
towards the right-hand wall of the cardboard box (e.g., by 1mm). It does not matter whether this
point was originally near the top or the bottom of the box, already close to the right-hand wall of
the box, or very far away from it. In other words, it does not matter what its x or z coordinate is.
This seems so natural we would not usually waste any time thinking about it. Increasing y a tiny
bit always means ”move this point a tiny bit towards the right-hand wall”.

But in geographic coordinates, incremental changes of just one variable have a very different
effect: Increasing α means moving your position along some circle in space, and it’s an entirely
different circle depending on the point you’re moving. Increasing α might move a point over large
or small distances, closer to the right wall or closer to the left, as well as closer to the rear wall
or closer to the front. It all depends on where exactly that point was originally located. This
sounds confusing. But if we happen to have an object in our setup that is shaped like a circle or
a sphere (some people might even want to build a spherical stimulation arena), using a geographic
coordinate system instead of a Cartesian one actually makes our lives easier, not harder.

Let us consider two examples. We can describe any position p in three-dimensional space using
Cartesian coordinates, p=(x, y, z)T, as shown in Fig. 3a. Let us look at three points in this space.

For each point in space, we can predict the direction in which a point would move if any one
coordinate were to increased incrementally. To illustrate this effect, we could draw a vector between
the old and new position of the point. But because the changes are tiny, this vector would be nigh-
invisible. Instead, we will draw a vector that, while pointing in the direction of the incrediby tiny
change, is in fact much longer than that. The exact length doesn’t matter, because we only really
care about the direction. To keep things simple and easy to memorise, we will usually choose a
length of exactly 1, which is why these vectors are called ”unit vectors”.

Now, we can look at the same three points again, this time describing their position with ge-
ographic coordinates p = (r, α, β)T. We can once again determine the direction an incremental
change of one coordinate would take us from each of these points. But this time, something has
changed: the unit vectors point in different direction, depending on which point we compute them
at. This is a fundamental property of geographic coordinates, and polar coordinates in general.
It may seem confusing at first, but if used correctly, it allows us to solve problems that would
otherwise be hard to figure out. One such example is fitting squares onto a sphere, and determining
the geographic coordinates of different points within each square – or in our case, determining the
geographic coordinates of individual LEDs (section 2.2).



S3 Text | Dehmelt, Meier, Hinz et al. 2019 16

Computing unit vectors

The Cartesian unit vectors, expressed in Cartesian coordinates, are

ux =
∂

∂x

 x

y

z

 =

 1

0

0


uy =

∂

∂y

 x

y

z

 =

 0

1

0

 (12)

uz =
∂

∂z

 x

y

z

 =

 0

0

1


These vectors each have length one, befitting a unit vector. The geographic unit vectors, expressed
in Cartesian coordinates, can be computed from

∂

∂r

 x

y

z

 =

 r cosα cosβ

r cosα sinβ

r sinα


∂

∂α

 x

y

z

 =

 −r cosα sinβ

r cosα cosβ

0

 (13)

∂

∂β

 x

y

z

 =

 −r sinα cosβ

−r sinα sinβ

r cosα


Here, we implicitly replaced x, y and z by their corresponding geographic coordinate values using
equation (10) before computing the partial derivative. We did not in fact convert an (x, y, z)

coordinate vector to an (r, α, β) coordinate vector, so the result is still a vector in Cartesian space.
However, each of these vectors have length r, not 1. To turn them into proper unit vectors, we thus
need to divide by r. We finally obtain three unit vectors,

ur =
1

r
· ∂

∂r

 x

y

z

 =

 cosα cosβ

cosα sinβ

sinα

 (14)

which always points outward from the sphere centre,

uα =
1

r
· ∂

∂α

 x

y

z

 =

 − cosα sinβ

cosα cosβ

0

 (15)

which is always tangential to a parallel, and

uβ =
1

r
· ∂

∂β

 x

y

z

 =

 − sinα cosβ

− sinα sinβ

cosα

 (16)

which is always tangential to a meridian. Parallels are horizontal circles parallel to the x-y plane,
with a position and size defined by the radius and elevation coordinates. Meridians are vertical
hemicircles, with a position and size defined by the radius and azimuth coordinates. Most meridians
are not parallel to any one of the Cartesian coordinate planes. Rather, they always include both
poles of a sphere, and rotate around the axis connecting the poles. See Fig. 11 for an illustration.



S3 Text | Dehmelt, Meier, Hinz et al. 2019 17

B MATLAB code
This section presents the content of the MATLAB file sphereEachLed20160905a.m, including all
subfunctions, which we originally used to compute LED positions, create visual stimuli frame by
frame, and map one onto the other to generate control signals for each and every one of the LEDs.
For a list of contributors, see the preamble of the file itself. The version included here contains
more extensive comments than most others, providing a more readily understandable preview of
code architecture. It has not been debugged, and is known to contain several errors leading to
the local ”flipping” of stimuli. These mistakes have been corrected in the alternative version,
sphereEachLed20160831k.m. The latter is the version Rebecca Meier used for her work, but it is
less extensively commented. It is readily available on demand. Our most up-to-date code combining
all sub-functions into one is provided as a separate supplement, S1 Code, published alongside this
manuscript.

function [ledstatusmap,ledstatus] = sphereEachLed(varargin)1

%SPHEREEACHLED Individual LED positions and activity in spherical arena.2

%3

% LEDSTATUSMAP = SPHEREEACHLED computes the positions of each individual4

% LED in a spherical stimulus arena (i.e. 64 individual LEDs per LED5

% tile). It then compares these positions to a given stimulus pattern,6

% to provide the on/off status of each individual LED over time.7

%8

% LEDSTATUSMAP is a 3D numerical array. Its first two dimensions taken9

% together represent the status of all individual LEDs during one10

% stimulus frame; it is worth noting that the position of LEDs in this11

% two-dimensional matrix is shuffled in a semi-nonsensical way to meet12

% the requirements of the code driving the stimulus arena (see below).13

% The third dimension of LEDSTATUSMAP represents one frame at a time.14

%15

% [~,LEDSTATUS] = SPHEREEACHLED returns a 3D numerical array. Its first16

% two dimensions taken together represent the status of all individual17

% LEDs during one stimulus frame. Here, columns represent the 6418

% individual LEDs on one tile, and rows represent one LED from each of19

% the (e.g., 236) tiles. The third dimension of LEDSTATUS represents one20

% stimulus frame at a time.21

%22

% There are no required input arguments, but a number of optional ones.23

%24

% LEDSTATUSMAP = SPHEREEACHLED(..., ’PARAM1’,val1, ’PARAM2’,val2, ...)25

% specifies optional parameter name/value pairs to adapt mask shapes and26

% positions, and to control or suppress figure creation. Parameters are:27

%28

% ’lid’ - Is there a lid covering the top or bottom of the sphere?29

% Valid options are ’none’ (default), ’top only’ and30

% ’bottom only’.31

% ’stimulus’ - Custom stimulus pattern. Must be a 2D or 3D numerical32

% array, where the first dimension represents elevation,33

% the second represent azimuth, and the third represents34

% one stimulus frame at a time.35

% ’showinfo’ - Whether to display debugging messages.36

% Options are ’yes’ (default) and ’no’.37

% ’showplot’ - Whether to display debugging plots.38

% Options are ’yes’ (default) and ’no’.39

%40

% Which of these parameter/value pairs are specified and which ones are41

% left at default values is completely up to the user. Also, they can be42

% specified in any order, as long as they are specified as pairs.43

%44

% --------45



S3 Text | Dehmelt, Meier, Hinz et al. 2019 18

%46

% Code example 0: To display this help file from the command window, call47

% help sphereEachLed48

%49

% Code example 1: To obtain LED status for the default stimulus, and50

% without a lid covering the sphere arena, call51

% ledstatusmap = sphereEachLed;52

%53

% Code example 2: To obtain LED status for a custom stimulus, call54

% ledstatusmap = sphereEachLed(’stimulus’,mystimulus);55

%56

% Code example 3: To obtain LED status for a custom stimulus, while at57

% the same time suppressing plots and debugging messages, call58

% ledstatusmap = sphereEachLed(’stimulus’,mystimulus,’ ...59

% ’showinfo’,’no’,’showplot’,’no’);60

%61

% --------62

%63

% This function requires other custom functions. These may be included64

% in this file (scroll down to verify), or included as separate .m files.65

% When split into individual .m files, functions should be named thus:66

%67

% sphereShape.m - computes overall sphere shape68

% sphereTilePosition.m - computes LED tile positions69

% sphereLedPosition.m - computes individual LED positions70

% spherePlotLedPosition.m - optional, shows individual LED positions71

% sphereLedStatus.m - computes when each LED must be on or off72

% sphereFakeCylinder.m - arranges tiles by ID number to match code73

% spherePlotStatus.m - optional, shows individual LED activity74

%75

% Version number and credits apply to all of these functions as a whole.76

%77

% (In addition, the function STIMULUSBAR is called to create the default78

% stimulus pattern. If a custom pattern is provided to SPHEREEACHLED by79

% specifying the ’pattern’ parameter, that pattern is used instead.80

%81

% sphereStimulusPattern.m - optional, creates default stimulus82

%83

% This function STIMULUSBAR is a standalone function and comes with its84

% own documentation. Thus, it is always contained in a separate file.85

% Compatibility has been tested for STIMULUS of version 2016-08-25a.)86

%87

% --------88

%89

% This is version 2016-09-02e.90

%91

% Created by Florian Alexander Dehmelt, U Tuebingen, 7 August 2016.92

% Based on an earlier set of functions by Julian Hinz, U Tuebingen, with93

% contributions by Kun Wang, U Tuebingen. If you require any changes,94

% let me know: florian.dehmelt@uni-tuebingen.de95

96

97

98

% PARSE VARIABLE INPUT ARGUMENTS99

%100

% Check which optional input arguments were provided, and whether their101

% values were provided in the correct format, e.g. a real number, a102

% positive real number, a character array, etc.; if an argument was not103

% provided, assign a default value instead.104

105

% Note: by default, a standard stimulus pattern is created. If a custom106

% stimulus pattern is provided by specifying the ’pattern’ input107

% parameter of SPHEREEACHLED, that custom pattern is used instead.108



S3 Text | Dehmelt, Meier, Hinz et al. 2019 19

109

close all110

p = inputParser;111

112

validstimulus = @(x) isnumeric(x) && numel(size(x))==3;113

validshow = @(x) strcmp(x,’yes’) || strcmp(x,’no’);114

validlid = @(x) strcmp(x,’none’) || ...115

strcmp(x,’top only’) || ...116

strcmp(x,’bottom only’);117

118

default.lid = ’none’;119

addOptional(p,’lid’,default.lid,validlid);120

121

default.stimulus = stimulusBar(’barwidth’,30,’direction’,0, ...122

’showplot’,’no’,’numframe’,360);123

addOptional(p,’stimulus’,default.stimulus,validstimulus);124

125

default.showinfo = ’yes’;126

addOptional(p,’showinfo’,default.showinfo,validshow);127

128

default.showplot = ’yes’;129

addOptional(p,’showplot’,default.showplot,validshow);130

131

parse(p,varargin{:});132

133

lid = p.Results.lid;134

stimulus = p.Results.stimulus;135

showinfo = p.Results.showinfo;136

showplot = p.Results.showplot;137

138

139

140

% DISPLAY WELCOME MESSAGE141

%142

% Display a welcome message on the command line, containing some basic143

% instructions for the user.144

145

if strcmp(showinfo,’yes’)146

display([’To display the help file for this function, enter the ’, ...147

’following command in the MATLAB command window: ’, ...148

’help sphereEachLed’])149

end150

151

152

153

% COMPUTE SPHERE SHAPE154

%155

% Compute the overall shape of each hemisphere, its structural ribs, and156

% the ribbons of LED tiles in between the ribs. This generates a sphere157

% with a default radius, which can be altered inside the function158

% sphereShape. Once sharing this code, different radii could be offered.159

160

[sphereradius, ribbonradius, ribbonangle, ribangle] = sphereShape(lid);161

162

163

164

% COMPUTE TILE POSITIONS165

%166

% Manually set the number of tiles per ribbon (top to bottom, meridian to167

% side - i.e., decreasing elevation from +90, increasing azimuth from 0),168

% for one hemisphere of the spherical arena. This computation could169

% easily be automated before sharing the code; as long as it is used in170

% conjunction with our arena, there is no need to do so. Afterwards,171



S3 Text | Dehmelt, Meier, Hinz et al. 2019 20

% compute the geographic coordinates of all tile centres.172

173

% Set number of tiles in each ribbon (top to bottom, meridian to side).174

switch lid175

case ’none’176

numtile = [5 9 11 13 14 15 14 13 11 8 5];177

case ’top only’178

numtile = [2 5 9 11 13 14 15 14 13 11 8 5];179

case ’bottom only’180

numtile = [5 9 11 13 14 15 14 13 11 8 5 2];181

otherwise182

error([’-- How many lids are covering the poles of the sphere? ’, ...183

’Three scenarios are possible: ’’none’’, ’’top only’’, ’, ...184

’and ’’bottom only’’. Please select one of them. --’]);185

end186

187

% Compute the position of LED tiles (holding 64 LEDs each),188

% for one hemisphere of the spherical arena.189

tilepos = sphereTilePosition(ribbonradius, ribbonangle, ribangle, ...190

numtile, lid);191

192

% Note: ”position” refers to the actual geographic coordinates in actual193

% space, not the sequential ID numbers (e.g. 1 to 128) by which the tiles194

% are called. These will be set and assigned further below.195

196

197

198

% COMPUTE LED POSITIONS199

%200

% Compute the positions of all individual LEDs (64 per tile),201

% for one hemisphere of the spherical arena.202

203

% Given the position of the tiles, and under the assumption that all204

% tiles are perpendicular to the sphere surface, compute LED positions205

% in both cartesian and geographic coordinates.206

[ledposcartesian,ledposgeographic] = ...207

sphereLedPosition(tilepos,sphereradius);208

209

% Replicate the second hemisphere by creating a mirror-symmetric image.210

% Do so for individual LED positions expressed both in cartesian...211

ledposcartesian2 = ledposcartesian .* ...212

repmat([1;-1;1], [1, ...213

size(ledposcartesian,2), ...214

size(ledposcartesian,3), ...215

size(ledposcartesian,4)]);216

217

ledposcartesian = cat(4, ledposcartesian, ledposcartesian2);218

219

% ...and in geographic coordinates.220

ledposgeographic2 = ledposgeographic .* ...221

repmat([1;-1], [1, ...222

size(ledposgeographic,2), ...223

size(ledposgeographic,3), ...224

size(ledposgeographic,4)]);225

226

ledposgeographic = cat(4, ledposgeographic, ledposgeographic2);227

228

229

230

% DISPLAY LED POSITIONS231

%232

% Display the position of each individual LED in both cartesian and233

% geographic coordinate systems to verify their proper arrangement.234



S3 Text | Dehmelt, Meier, Hinz et al. 2019 21

% This step is not essential, and should be used for debugging only.235

236

if strcmp(showplot,’yes’)237

spherePlotLedPosition(ledposcartesian,ledposgeographic)238

end239

240

241

242

% COMPUTE LED ACTIVITY STATUS243

%244

% Compare the chosen stimulus pattern to the positions of individual LEDs245

% to find out which one should be active at what time.246

247

ledstatus = sphereLedStatus(stimulus,ledposgeographic);248

249

250

251

252

% DISPLAY LED ACTIVITY OVER TIME253

%254

% If plots are desired, show the computed on/off status of each255

% individual LED. This is slow, so it should be used for debugging only.256

257

if strcmp(showplot,’yes’)258

spherePlotStatus(ledstatus,ledposcartesian)259

end260

261

262

263

% REARRANGE LED ACTIVITY MAP TO ACCOMODATE EXISTING CODE264

%265

% As the existing code driving our stimulus arena expects LED tiles to be266

% arranged on the surface of a cylinder (or on a flat rectangular267

% surface), we need to rearrange our spherical distribution of LED tiles268

% into such a rectangular array. The resulting position of certain tiles269

% may seem nonsensical (a tile from the top ending up in the centre of270

% the rectangle, its neighbour up in the bottom right corner etc.), but271

% this new rearrangement is only virtual and has no deeper meaning272

% besides getting the code to work properly. Don’t worry about it.273

274

% Based on the tile ID number displayed by the spherical arena, arrange275

% LED status information in different parts of a rectangular array.276

ledstatusmap = sphereFakeCylinder(ledstatus,lid,showinfo);277

278

end279

280

% The main function ends here. Below are all(!) required custom functions281

% called by the main function. These can be moved to appropriately named,282

% separate .m files if desired, but doing so may lead to version conflicts.283

284

285

286

287

288

289

%% Function to compute the physical parameters of the basic sphere.290

function [sphereradius, ...291

ribbonradius, ribbonangle, ribangle] = sphereShape(lid)292

293

% How many ribbons of LEDs are there, how wide are they, and the294

% structural ribs between them? Because of the inclination of the LED295

% tiles and because of inevitably imperfect spacing, effective ribbon296

% size is larger than originally planned. See note below.297



S3 Text | Dehmelt, Meier, Hinz et al. 2019 22

298

numribbon = 11;299

tilewidth = 21; % Here, used only to compute elevation of ribs/ribbons.300

ribwidth = 2.1; % Here, used only to compute elevation of ribs/ribbons.301

302

% NOTE: Elsewhere, the tilewidth is 20 (which is exact). Suggestion:303

% Set ribwidth to 3.1 instead to describe the width of the rib itself, as304

% well as the width of the inevitable extra space next to it. Then, we305

% can use the ”true” tilewidth = 20 throughout and avoid confusion.306

307

% To minimize the gap near the poles of the sphere, determine the radius308

% for which the sum of the elevation angles covered by LED tiles, covered309

% by structural ribs, and covered by the desired holes at the top and310

% bottom equals approaches 180 degrees. The following equation is a cost311

% function penalising any deviation from this optimal radius.312

eqn = @(radius) abs((numribbon) * 2*asind((tilewidth/2)/radius) + ...313

(numribbon+1) * 2*asind((ribwidth/2)/radius) + ...314

1 * 2*asind(60.1/(2*radius)) - 180);315

316

% Numerically solve the equation to find the optimal sphere radius.317

sphereradius = fminsearch(eqn,50);318

319

% Next, Julian decided to deviate from the optimum for practical reasons.320

% The original code did NOT work for any stretch factors other than 1.05,321

% but this problem has been fixed since. All factors >= 1.05 should work.322

stretchfactor = 1.05;323

sphereradius = sphereradius * stretchfactor;324

325

% Here, ”sphereradius” refers to the radius of the sphere on which the326

% centres of all LED tiles are located. The following ”outerradius” is327

% the radius of the sphere on which the inner edges of tiles are located.328

outersphereradius = sqrt(sphereradius^2+(tilewidth/2)^2);329

330

% (Re-)Compute the elevation angles covered by a tile, and by a rib.331

ribbonangle = 2*asind((tilewidth/2)/sphereradius);332

ribangle = 2*asind((ribwidth/2)/sphereradius);333

334

% Compute the radii of perfectly horizontal planes containing one rib335

% each. This computation assumes an odd number of ribbons, i.e. the336

% presence of an equatorial ribbon, rather than an equatorial rib.337

% Because of symmetry, only the unique radii are computed, then338

% replicated once for their mirror-symmetric counterpart.339

340

% First, compute the number of unique ribs.341

numuniquerib = (numribbon-1)/2+1;342

343

% Second, compute the unique circular radii.344

ribbonradius = NaN(numuniquerib,1);345

for k = 1:((numribbon-1)/2+1);346

ribbonradius(k) = outersphereradius * cosd((k-1/2)*ribbonangle ...347

+ (k-1)*ribangle);348

end349

350

% Third, replicate the mirror-symmetric copies.351

ribbonradius = [fliplr(ribbonradius(2:numuniquerib)’), ribbonradius’];352

353

% Fourth, if a lid is present, add an additional circular radius.354

if ~strcmp(lid,’none’)355

356

lidradius = outersphereradius * ...357

cosd((numuniquerib+.5)*ribbonangle + numuniquerib*ribangle);358

359

% Depending on where the lid is located, place its radius360



S3 Text | Dehmelt, Meier, Hinz et al. 2019 23

% at the top or at the bottom of the list of circular radii.361

switch lid362

case ’top only’363

ribbonradius = [lidradius ribbonradius];364

case ’bottom only’365

ribbonradius = [ribbonradius lidradius];366

otherwise367

error([’-- How many lids are covering the poles of the ’, ...368

’sphere? Three scenarios are possible: ’’none’’, ’, ...369

’’’top only’’, and ’’bottom only’’. Please select ’, ...370

’one of them.--’]);371

end372

373

end374

375

end376

377

378

379

380

381

%% Function to compute position of LED tiles from basic sphere shape.382

function tilepos = sphereTilePosition(ribbonradius, ribbonangle, ...383

ribangle, numtileperribbon, lid)384

385

ribbonbeta = (ribbonangle+ribangle) * (5:-1:-5);386

387

% To create the correct number of ribbons, check whether lid is present.388

switch lid389

case ’none’390

% Relax. Do nothing.391

case ’top’392

ribbonbeta = [ribbonangle*6 + ribangle*6, ribbonbeta];393

case ’bottom’394

ribbonbeta = [ribbonbeta, -(ribbonangle*6 + ribangle*6)];395

otherwise396

error([’-- How many lids are covering the poles of the sphere? ’, ...397

’Three scenarios are possible: ’’none’’, ’’top only’’, ’, ...398

’and ’’bottom only’’. Please select one of them. --’]);399

end400

401

% Preallocate variable size.402

tilepos = NaN(sum(numtileperribbon),5);403

404

% In principle, some tiles may be flipped upside down, while others are405

% not. To accomodate for this, we will be keeping track of a variable406

% indicating whether a specific tile is flipped or not. For now, all407

% tiles will be set to 1 (”flipped”), rather than 0 (”upright”), because408

% this is the case in our current setup.409

tilepos(:,1) = 1;410

411

% Run counter for each iteration to save tile values in different places.412

counter = 0;413

414

% Go through all rows...415

for a = 1:length(ribbonradius)416

417

% ...and within each row, go through all of its elements.418

for b = 1:numtileperribbon(a)419

420

% Compute the azimuth of each tile centre,421

% taking into account the 6mm wide meridian ”keel” or ”spine”,422

% and the 20mm width of each tile.423



S3 Text | Dehmelt, Meier, Hinz et al. 2019 24

keelwidth = 6;424

tilewidth = 20;425

426

% Compute the azimuth covered by the keel, and by each tile.427

% These numbers are exact for the keel, as well as for tiles along428

% the equatorial ribbon. For all other ribbons, they are ONLY429

% APPROXIMATE, because these tiles are perpendicular to the430

% sphere, but not perpendicular to the circle formed by the ribbon431

% (i.e., they are not perfectly vertical). Their true azimuth spread432

% would be slightly larger.433

keelangle = 2*asind((keelwidth/2)/ribbonradius(a));434

tileangle = 2*asind((tilewidth/2)/ribbonradius(a));435

436

% Compute the azimuth of the centre of this tile,437

% considering the azimuth offset and the tiles already placed.438

thistilealpha = keelangle + (b-1/2)*tileangle;439

440

% Counter to save in the desired order.441

counter = counter + 1;442

tilepos(counter,3) = thistilealpha;443

tilepos(counter,4) = ribbonbeta(a);444

tilepos(counter,5) = ribbonradius(a);445

446

end447

448

end449

450

end451

452

453

454

455

456

%% Function to compute individual LED positions from tile positions.457

function [ledposcartesian, ...458

ledposgeographic] = sphereLedPosition(tilepos,sphereradius)459

460

ledseparation = 2.48;461

numtile = size(tilepos,1);462

tileisflipped = tilepos(:,1);463

464

% Pre-allocate variable size to speed up computation.465

ledpos = NaN(length(tilepos)*64,5);466

ledposcartesian = NaN(3,8,8,numtile);467

ledposgeographic = NaN(2,8,8,numtile);468

469

for tile = 1:numtile470

471

% Read out the position of the tile centre in geographic coordinates.472

tilealpha = tilepos(tile,3);473

tilebeta = tilepos(tile,4);474

tileradius = sphereradius;475

476

% Convert the position of the tile centre into cartesian coordinates.477

tilecentre = tileradius * [cosd(tilebeta)*cosd(tilealpha); ...478

cosd(tilebeta)*sind(tilealpha); ...479

sind(tilebeta)];480

481

% Compute the ”unit” vector in the beta direction (still cartesian).482

betaunitvector = [-sind(tilebeta)*cosd(tilealpha); ...483

-sind(tilebeta)*sind(tilealpha); ...484

cosd(tilebeta)];485

486



S3 Text | Dehmelt, Meier, Hinz et al. 2019 25

% Normalise the vector to make sure it is a unit vector.487

betaunitvector = betaunitvector/norm(betaunitvector);488

489

% Compute the ”unit” vector in the alpha direction (still cartesian).490

alphaunitvector = [-cosd(tilebeta)*sind(tilealpha); ...491

cosd(tilebeta)*cosd(tilealpha); ...492

0];493

494

% Normalise the vector to make sure it is a unit vector.495

alphaunitvector = alphaunitvector/norm(alphaunitvector);496

497

498

% Now, place 64 individual LEDs around the tile centre.499

for row = 1:8 % go through columns (!)500

for col = 1:8 % go through rows (!)501

502

% Compute LED position in cartesian coordinates.503

b = ledseparation * (row - 4.5);504

a = ledseparation * (col - 4.5);505

rled = tilecentre + b*betaunitvector + a*alphaunitvector;506

507

% Save them for later.508

ledposcartesian(:,row,col,tile) = rled;509

510

% Convert LED position from cartesian to geographic coordinates.511

beta = asind(rled(3)/norm(rled));512

alpha = atand(rled(2)/rled(1));513

514

% Constrain geographic coordinate values to standard range.515

% beta = mod(beta,180)-90; % Not needed.516

alpha = mod(alpha,180);517

518

% Save them for later.519

ledposgeographic(:,row,col,tile) = [beta,alpha];520

521

% Remember which tile this LED is on (i.e., its ID number).522

id = (tile-1)*64 + (row-1)*8 + col;523

524

ledpos(id,2) = tilepos(tile,2); % Remember the tile ID number.525

526

end527

end528

end529

530

allisflipped = floor(sum(tileisflipped)/numel(tileisflipped));531

532

if allisflipped % All tiles were flipped.533

534

% Were all tiles accidentally flipped upside down during construction?535

% If so, flip them back the way they belong.536

ledposcartesian = flipdim(flipdim(ledposcartesian, 2), 3);537

ledposgeographic = flipdim(flipdim(ledposgeographic, 2), 3);538

539

elseif sum(tileisflipped) % At least some tiles were flipped.540

541

% Were individual tile flipped upside down during construction?542

% Or, more precisely, rotated 180 degrees around its centre point?543

% If so, flip the LED coordinates back the way they belong.544

545

for tile = 1:numtile546

if tileisflipped(tile)547

548

ledposcartesian(:,:,:,tile) = ...549



S3 Text | Dehmelt, Meier, Hinz et al. 2019 26

flipdim(flipdim(ledposcartesian(:,:,:,tile), 2), 3);550

551

ledposgeographic(:,:,:,tile) = ...552

flipdim(flipdim(ledposgeographic(:,:,:,tile), 2), 3);553

554

end555

end556

557

end558

559

end560

561

562

563

564

565

%% Function to assign custom tile numbers to tile positions.566

function rearranged = sphereFakeCylinder(original,lid,showinfo)567

568

% FIRST, REORDER TILES BY TILE ID NUMBER569

%570

% Rearrange information on the activity of each individual LED based on571

% the ID number of the tile upon which they are located. These tile572

% numbers (ranging from 1 to 240) are displayed on the spherical arena.573

574

% List the ID numbers of all tiles in one hemisphere, top-to-bottom and575

% meridian-to-side (i.e., going through one horiz. row after another).576

hemisphere1 = ...577

[115, 116, 65, 45, 47, ...578

113, 114, 80, 78, 66, 46, 48, 4, 2, ...579

119, 120, 118, 79, 77, 67, 56, 15, 14, 16, 3, ...580

112, 111, 110, 109, 117, 61, 68, 54, 38, 37, 12, 13, 1, ...581

108, 107, 106, 105, 85, 86, 63, 52, 55, 42, 39, 11, 24, 6, ...582

84, 83, 82, 81, 88, 87, 64, 51, 53, 43, 40, 9, 10, 23, 5, ...583

104, 103, 102, 101, 74, 76, 62, 50, 44, 41, 25, 18, 17, 22, ...584

100, 98, 97, 90, 73, 75, 49, 28, 27, 26, 20, 19, 21, ...585

99, 92, 89, 72, 71, 60, 58, 33, 34, 30, ...586

29, 94, 91, 70, 69, 59, 36, 35, 31, ...587

95, 96, 93, 57, 32];588

589

% List the ID numbers of tiles on the first-hemisphere side of the lid.590

lid1 = [7, 8];591

592

% List the ID numbers of the tiles on the second hemisphere. The order is593

% top-to-bottom and meridian-to-side again - so it is mirror-symmetric to594

% the order of the first hemisphere (the actual ID numbers assigned to595

% each tile can be arbitrarily different, though).596

% hemisphere2 = ...597

% [, ...598

% , ...599

% , ...600

% , ...601

% , ...602

% , ...603

% , ...604

% , ...605

% , ...606

% , ...607

% ];608

609

% Finally, list the ID numbers for the second half of the lid.610

% lid2 = [127, 128];611

612



S3 Text | Dehmelt, Meier, Hinz et al. 2019 27

% % The following are dummy IDs created for the second hemisphere and the613

% % second half of the lid. They must be replaced with the true IDs there614

% % as soon as Kun Wang has made these available.615

hemisphere2 = hemisphere1 + 120;616

lid2 = lid1 + 120;617

618

% Aggregate the tile ID numbers of all tiles in the spherical arena in619

% the correct order, taking into account where exactly the lid is placed.620

switch lid621

case ’none’622

neworder = [hemisphere1,hemisphere2];623

case ’top only’624

neworder = [lid1,hemisphere1,lid2,hemisphere2];625

case ’bottom only’626

neworder = [hemisphere1,lid1,hemisphere2,lid2];627

end628

629

% The following line ensures that unassigned tile numbers are padded with630

% NaNs. If you remove the line, they will be padded with zeros instead -631

% or skipped entirely if there are no higher, actually assigned numbers.632

% To safely pad the array with zeros, replace NaN(...) with zeros(...).633

numframe = size(original,3);634

reordered = NaN(8,8,numframe,240);635

636

% Rearrange the fourth dimension of the arrays containing LED positions.637

% Remember that dimension 1 are the actual coordinates (e.g., azimuth and638

% elevation), dimensions 2 and 3 cluster the 8*8 individual LED on each639

% tile, and dimension 4 goes through all tiles in the setup. The old640

% order went through all tiles top-to-bottom, meridian-to-side; the new641

% order goes through all tiles from the tile with ID no. 1 to the tile642

% with ID no. 236 (or whatever else the maximum is).643

numtile = numel(neworder);644

oldorder = 1:numtile;645

reordered(:,:,:,neworder) = original(:,:,:,oldorder);646

647

% For debugging (and only for debugging), display how many tile IDs were648

% found, and how many more could be used.649

if strcmp(showinfo,’yes’)650

unassigned = numel(find(isnan(reordered)))/(64*size(original,1));651

display([’-- Out of 240 supported tiles, ’,num2str(numtile), ...652

’ tile IDs were assigned; ’,num2str(unassigned), ...653

’ were left unassigned. --’])654

end655

656

657

658

% SECOND, REARRANGE TILES INTO A VIRTUAL, RECTANGULAR PATTERN659

%660

% As the existing code driving our stimulus arena expects LED tiles to be661

% arranged on the surface of a cylinder (or on a flat rectangular662

% surface), we need to rearrange our distribution of LED tiles into such663

% a rectangular array. The resulting position of certain tiles may seem664

% nonsensical (a tile from the top ending up in the centre of the665

% rectangle, its neighbour up in the bottom right corner etc.), but this666

% new rearrangement is only virtual and has no deeper meaning besides667

% getting the code to work properly. Don’t worry too much about it.668

669

% Arrange increasing tile ID top-to-bottom, then left-to-right, in670

% vertical columns of 8. The total number of columns is 15 for 120 tiles,671

% 30 for 240 tiles.672

673

rearranged = NaN(64,240,numframe);674

675



S3 Text | Dehmelt, Meier, Hinz et al. 2019 28

% % The following is a HACK. Clean up in the near future. (!!!)676

% reordered = permute(reordered,[2 1 3 4]);677

678

for tileID = 1:numtile679

680

xshift = 8*floor((tileID-1)/8);681

yshift = 8*mod(tileID-1,8);682

683

rearranged((1:8)+56-yshift,(1:8)+xshift,:) = reordered(:,:,:,tileID);684

685

end686

687

688

end689

690

691

692

693

694

%% Function to display the positions of all individual LEDs.695

function spherePlotLedPosition(ledposcartesian,ledposgeographic)696

697

% Part 1/2: Plot LED positions in cartesian coordinates.698

figure(44)699

set(gcf,’Color’,[1 1 1])700

701

% Read out the position data.702

rledplot = reshape(ledposcartesian,[3 numel(ledposcartesian)/3]);703

numtile = size(ledposcartesian,4);704

705

% Divide the tiles into four groups, to be assigned one of four colours.706

group1 = 1:4:numtile;707

group2 = 2:4:numtile;708

group3 = 3:4:numtile;709

group4 = 4:4:numtile;710

711

% Find all the individual LEDs belonging to each group of tiles.712

index1 = repmat(1:64,[1 numel(group1)]) + ...713

reshape(64*ones(64,1)*(group1-1), [1 64*numel(group1)]);714

index2 = repmat(1:64,[1 numel(group2)]) + ...715

reshape(64*ones(64,1)*(group2-1), [1 64*numel(group2)]);716

index3 = repmat(1:64,[1 numel(group3)]) + ...717

reshape(64*ones(64,1)*(group3-1), [1 64*numel(group3)]);718

index4 = repmat(1:64,[1 numel(group4)]) + ...719

reshape(64*ones(64,1)*(group4-1), [1 64*numel(group4)]);720

721

% Plot the individual LEDs, one group after another.722

hold on723

s1 = scatter3(rledplot(1,index1),rledplot(2,index1),rledplot(3,index1));724

s2 = scatter3(rledplot(1,index2),rledplot(2,index2),rledplot(3,index2));725

s3 = scatter3(rledplot(1,index3),rledplot(2,index3),rledplot(3,index3));726

s4 = scatter3(rledplot(1,index4),rledplot(2,index4),rledplot(3,index4));727

hold off728

729

% Adjust LED plot size, and colour them in their group’s colour.730

axis equal731

colour = [[.8 .4 .2]; [.2 .4 .8]; [.2 .8 .6]; .2*[1 1 1]];732

set(s1,’MarkerEdgeColor’,colour(1,:),’MarkerFaceColor’,colour(1,:))733

set(s2,’MarkerEdgeColor’,colour(2,:),’MarkerFaceColor’,colour(2,:))734

set(s3,’MarkerEdgeColor’,colour(3,:),’MarkerFaceColor’,colour(3,:))735

set(s4,’MarkerEdgeColor’,colour(4,:),’MarkerFaceColor’,colour(4,:))736

set([s1,s2,s3,s4],’SizeData’,2)737

738



S3 Text | Dehmelt, Meier, Hinz et al. 2019 29

% Part 2/2: Plot LED positions in geographic coordinates.739

figure(45)740

set(gcf,’Color’,[1 1 1])741

axis([-180 180 -90 90])742

box on743

xlabel(’Azimuth’)744

ylabel(’Elevation’)745

plot(ledposgeographic(2,:), ledposgeographic(1,:),’ko’,’MarkerSize’, 2)746

747

end748

749

750

751

752

753

%% Function to compute when each LED should be on or off.754

function ledstatus = sphereLedStatus(pattern,ledposgeographic)755

756

% Create a discrete grid in geographic coordinates. This grid must have757

% the same resolution as the stimulus pattern.758

betagridstep = 180/(size(pattern,1)-1);759

alphagridstep = 360/(size(pattern,2)-1);760

betagrid = (-90:betagridstep:+90)’;761

alphagrid = (-180:alphagridstep:+180)’;762

763

% How many individual LEDs are on each tile, how many tiles are there?764

numtile = 240;765

numframe = size(pattern,3);766

ledstatus = NaN(8,8,numframe,numtile);767

768

% Go through every single LED on every single tile, by row and column.769

for tile = 1:size(ledposgeographic,4)770

for row = 1:size(ledposgeographic,3)771

for col = 1:size(ledposgeographic,2)772

773

% Find the geographic grid point closest to the exact LED position.774

beta = ledposgeographic(1,row,col,tile);775

alpha = ledposgeographic(2,row,col,tile);776

[~ , bestbeta] = min(abs(beta-betagrid));777

[~ , bestalpha] = min(abs(alpha-alphagrid));778

779

% The LED status is the value of this grid point.780

ledstatus(row,col,:,tile) = pattern(bestbeta,bestalpha,:);781

782

% % The following is a HACK. Clean up in the near future. (!!!)783

% % (Not sure why it’s not ”row,col” instead...)784

% ledstatus(col,row,:,tile) = pattern(bestbeta,bestalpha,:);785

786

787

end788

end789

end790

791

end792

793

794

795

796

797

%% Function to display the activity of all individual LEDs (optional)798

function spherePlotStatus(ledstatus,ledposcartesian)799

800

figure(46)801



S3 Text | Dehmelt, Meier, Hinz et al. 2019 30

set(gcf,’Color’,[1 1 1],’Position’,[200 0 700 700])802

803

% Find the x, y and z coordinates of all LEDs, write them as a 3D array.804

% This array is row x column x tile ID, i.e., 8 x 8 x number of tiles.805

xled = squeeze(ledposcartesian(1,:,:,:));806

yled = squeeze(ledposcartesian(2,:,:,:));807

zled = squeeze(ledposcartesian(3,:,:,:));808

809

% Preallocate variable size, compute coordinates of a ball (see below).810

numframe = size(ledstatus,3);811

[xball,yball,zball] = sphere;812

ballradius = .95 * norm(ledposcartesian(:,1,1,1));813

814

% Go through one frame after another, creating a video of the stimulus.815

for k = 1:numframe816

817

% Find out which LEDs are on or off on this frame.818

ongroup = squeeze(ledstatus(:,:,k,:)==1);819

offgroup = squeeze(ledstatus(:,:,k,:)==0);820

821

% Display the active LEDs on this frame.822

scatter3(xled(ongroup),yled(ongroup),zled(ongroup), ...823

’MarkerFaceColor’,[.4 1 .6], ...824

’MarkerEdgeColor’,[.2 .2 .2], ...825

’SizeData’,30)826

set(gca,’XLim’,[-120 120],’YLim’,[-120 120],’ZLim’,[-120 120])827

828

hold on829

830

% Optionally, plot the inactive LEDs as well (slowing it all down).831

% scatter3(xled(offgroup),yled(offgroup),zled(offgroup), ...832

% ’MarkerFaceColor’,[.2 .2 .2], ...833

% ’MarkerEdgeColor’,[.2 .2 .2], ...834

% ’SizeData’,35)835

% set(gca,’XLim’,[-120 120],’YLim’,[-120 120],’ZLim’,[-120 120])836

837

% Add a partly transparent ball to facilitate depth perception.838

surf(ballradius*xball,ballradius*yball,ballradius*zball, ...839

’EdgeColor’,’none’,’FaceColor’,[1 1 1],’FaceAlpha’,.4)840

text(0,550,[’frame ’,num2str(k)],’FontSize’,32,’Units’,’pixels’)841

hold off842

843

% Add a pause to force MATLAB to display the movie more smoothly.844

pause(.01)845

846

end847

848

% Ensure that all axes are displayed with proper scaling, so the sphere849

% really appears as a sphere, not a distorted ellipsoid.850

axis square851

852

end853


