{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "# Table of Contents\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Loading Data\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Uses import routines for Matlab binaries\n", "\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pickle\n", "from scipy.io import loadmat\n", "\n", "data = loadmat('ANDA2024_Spectral_DataSets.mat')\n", "\n", "v4 = data['V4_lfp']\n", "flick = data['flicker_signals']\n", "v1_lfp = data['V1_lfp']\n", "v4_lfp = data['V4_lfp']\n", "\n", "n_trials, n_time, n_v1cells = v1_lfp.shape # M trials, N cells\n", "\n", "# generate time axis and determine sampling frequency, set a few important variables\n", "dt = 1e-3\n", "t_max = n_time*dt\n", "freq_sample = 1/dt\n", "t_base = 0.0 # start baseline\n", "t_stim = 0.5 # start stimulus\n", "t_stop = t_max # end of trial\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.6" }, "org": null }, "nbformat": 4, "nbformat_minor": 4 }