addpath(genpath('../../../my-tools')); addpath(genpath('../../../external-tools')); clearvars -except subjsData poolstack* pooltw*; %close all; clc; reload=0; recomp_shLRalgn=1; recomputelm=1; Nlag=10; Nspan=200; %Nspan=200; Nshf=100; %selflag=1; %LookL during offer1 is most common %selflag=4; %LookR during offer2 is most common %selflag=2; %LookR during offer1 is less common %selflag=3; %LookL during offer2 is less common %caseflag=1; % perform analysis saccade-aligned forcing stare after saccade %caseflag=2; % perform analysis saccade-aligned ignoring gaze after saccade %caseflag=3; % perform analysis for unilateral staring only trials %caseflag=4; % same as caseflag=1 but forcing offerLL/LR %caseflag=5; % same as caseflag=2 but forcing offerLL/LR %caseflag=6; % same as caseflag=3 but forcing offerLL/LR for selflag=1%[1 4] for caseflag=2%4:6 close all clearvars -except subjsData reload recomp_shLRalgn recomputelm Nlag Nspan Nshf selflag caseflag; close all; clc; stareflag=(caseflag==1 | caseflag==4); %forces stare after saccade casesstrs={'1_shift_NOoffLR','2_shift_NOstare_NOoffLR','3_NOshift_NOoffLR','4_shift','5_shift_NOstare','6_NOshift'}; disp(['running selflag=' num2str(selflag) '; caseflag=' num2str(caseflag) '; (' casesstrs{caseflag} ')']); switch selflag case 1 most_recent_folder=['../../Figures/evLevR_off1LR_' casesstrs{caseflag} '/']; if ~exist(most_recent_folder,'dir'); mkdir(most_recent_folder); mkdir([most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms']); end selectedTimes='((ntce_ds(2,1)-40):ntce_ds(2,2))'; %selectedCases{1}='find((cciso1LL) & (ccepx(:,tt)<0))'; %selectedCases{2}='find((cciso1LL) & (ccepx(:,tt)>0))'; %case 2 % DEPRECATED %most_recent_folder='../../Figures/'; %selectedTimes='(ntce_ds(2,1)-40:ntce_ds(2,2))'; %selectedCases{1}='find((~cciso1LL) & (ccepx(:,tt)<0))'; %selectedCases{2}='find((~cciso1LL) & (ccepx(:,tt)>0))'; %case 3 % DEPRECATED %most_recent_folder='../../Figures/'; %selectedTimes='(ntce_ds(4,1)-40:ntce_ds(4,2))'; %selectedCases{1}='find((cciso2LL) & (ccepx(:,tt)<0))'; %selectedCases{2}='find((cciso2LL) & (ccepx(:,tt)>0))'; case 4 most_recent_folder=['../../Figures/evLevR_off2LR_' casesstrs{caseflag} '/']; if ~exist(most_recent_folder,'dir'); mkdir(most_recent_folder); mkdir([most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms']); end selectedTimes='((ntce_ds(4,1)-40):ntce_ds(4,2))'; %selectedCases{1}='find((~cciso2LL) & (ccepx(:,tt)<0))'; %selectedCases{2}='find((~cciso2LL) & (ccepx(:,tt)>0))'; end if reload % if ~exist('subjsData','var') % subjsData(1).sbdata=getSubjectData(1); % subjsData(2).sbdata=getSubjectData(2); % end if ~exist('poolstackvars','var') load latestpoolstackvars_14feb22.mat % or getPoolStackVars.m end if ~exist('pooltweyepos','var') load latestpooltweyepos_14feb22.mat % or getTimewinsPoolEyePos.m end if ~exist('pooltwspksq','var') load latestpooltwspks_14feb22.mat % or getTimewinsPoolSpikeSeqs.m end twLabels={'preoffer1','offer1','delay1','offer2','delay2','refixate','choice-go','ch-hold'}; nccs=[ 51 59 24 29 18 32 9 26]; ntrs=arrayfun(@(xx) size(poolstackvars(xx).offer1sd,1),1:8); Nccs=sum(nccs); Ntrs12=max(ntrs); Ntps12=arrayfun(@(tw) size(pooltweyepos(tw).posX,3), 1:8); Ntps12(1)=400; pooloffer1sd=[]; poolofferLev=[]; poolofferRev=[]; pooloffer1ev=[]; pooloffer2ev=[]; pooloffer1rw=[]; pooloffer2rw=[]; poolofferchR=[]; for sn=1:8 pooloffer1sd=cat(2, pooloffer1sd, repmat(cat(1,poolstackvars(sn).offer1sd,nan(Ntrs12-ntrs(sn),1)),[1 nccs(sn)])); poolofferLev=cat(2, poolofferLev, repmat(cat(1,poolstackvars(sn).offerLev,nan(Ntrs12-ntrs(sn),1)),[1 nccs(sn)])); poolofferRev=cat(2, poolofferRev, repmat(cat(1,poolstackvars(sn).offerRev,nan(Ntrs12-ntrs(sn),1)),[1 nccs(sn)])); pooloffer1ev=cat(2, pooloffer1ev, repmat(cat(1,poolstackvars(sn).offer1ev,nan(Ntrs12-ntrs(sn),1)),[1 nccs(sn)])); pooloffer2ev=cat(2, pooloffer2ev, repmat(cat(1,poolstackvars(sn).offer2ev,nan(Ntrs12-ntrs(sn),1)),[1 nccs(sn)])); pooloffer1rw=cat(2, pooloffer1rw, repmat(cat(1,poolstackvars(sn).offer1rw,nan(Ntrs12-ntrs(sn),1)),[1 nccs(sn)])); pooloffer2rw=cat(2, pooloffer2rw, repmat(cat(1,poolstackvars(sn).offer2rw,nan(Ntrs12-ntrs(sn),1)),[1 nccs(sn)])); poolofferchR=cat(2, poolofferchR, repmat(cat(1,poolstackvars(sn).chooseR,nan(Ntrs12-ntrs(sn),1)),[1 nccs(sn)])); end pooleposxmat=cat(3,pooltweyepos(1).posX,pooltweyepos(2).posX,pooltweyepos(3).posX,pooltweyepos(4).posX,... pooltweyepos(5).posX,pooltweyepos(6).posX,pooltweyepos(7).posX,pooltweyepos(8).posX); poolspksqmat=cat(3,pooltwspksq(1).spkseqs,pooltwspksq(2).spkseqs,pooltwspksq(3).spkseqs,pooltwspksq(4).spkseqs,... pooltwspksq(5).spkseqs,pooltwspksq(6).spkseqs,pooltwspksq(7).spkseqs,pooltwspksq(8).spkseqs); poolspksqmat=cat(3,nan(size(pooltwspksq(1).spkseqs)),nan(size(pooltwspksq(2).spkseqs)),pooltwspksq(3).spkseqs,... nan(size(pooltwspksq(4).spkseqs)),pooltwspksq(5).spkseqs,nan(size(pooltwspksq(6).spkseqs)),nan(size(pooltwspksq(7).spkseqs)),nan(size(pooltwspksq(8).spkseqs))); poolcovhist=cat(2,pooltwspksq(1).covhist,pooltwspksq(2).covhist,pooltwspksq(3).covhist,pooltwspksq(4).covhist,... pooltwspksq(5).covhist,pooltwspksq(6).covhist,pooltwspksq(7).covhist,pooltwspksq(8).covhist); %clearvars pooltwspksq pooltweyepos fchg=find(poolcovhist>=.999); fchl=find(poolcovhist<.999); ntcv=[fchg(diff([fchg sum(Ntps12)])>1)' fchl([diff(fchl) sum(Ntps12)]>1)']; ntce=[[1; 401; ntcv(1:end-1,2)] [400; ntcv(:,1)]]; vtps=ones(1,sum(Ntps12)); for jj=1:7; vtps(ntcv(jj,1):ntcv(jj,2))=nan; end %if sparsity==1 it means 1spike/ms that is 1000 spikes/s %nanmean(vectorise((nansum(poolspksqmat,3))./(nansum(poolspksqmat>=0,3))))*1000 %nanstd(vectorise((nansum(poolspksqmat,3))./(nansum(poolspksqmat>=0,3))))*1000 %% smooth by movmean filtering, downsample to 20ms, 50Hz resolution Ntps_ds=ceil(sum(Ntps12)/Nlag); tmax_ds=nanmovmean(1:size(pooleposxmat,3),Nlag,Nlag); poolspksqmat_ds=nan(Ntrs12,Nccs,length(tmax_ds)); pooleposxmat_ds=nan(Ntrs12,Nccs,length(tmax_ds)); for cc=1:Nccs poolspksqmat_ds(:,cc,:)=nanmovmean(squeeze(poolspksqmat(:,cc,:))',Nlag,[0 Nspan])'; pooleposxmat_ds(:,cc,:)=nanmovmean(squeeze(pooleposxmat(:,cc,:))',Nlag,Nlag)'; end clearvars poolspksqmat pooleposxmat %% poolcovhist_ds=nanmovmean(poolcovhist,Nlag,Nlag); %fcgh_ds=find(poolcovhist_ds>=.8); fchl_ds=find(poolcovhist_ds<.8); fcgh_ds=find(poolcovhist_ds>=.999); fchl_ds=find(poolcovhist_ds<.999); ntcv_ds=[fcgh_ds(diff([fcgh_ds Ntps_ds])>1)' fchl_ds([diff(fchl_ds) Ntps_ds]>1)']; vtps_ds=ones(1,Ntps_ds); for jj=1:7; vtps_ds(ntcv_ds(jj,1):ntcv_ds(jj,2))=nan; end ntce_ds=[[1 ceil(400/Nlag)+1 find(vtps_ds(2:end)+isnan(vtps_ds(1:end-1))==2)+1]' [ceil(400/Nlag) find(vtps_ds(1:end-1)+isnan(vtps_ds(2:end))==2)]']; Nvtps_ds=sum(vtps_ds==1); % Apply movmean independently across time windows % checktps_ds=zeros(1,length(poolcovhist_ds)); % for tw=1:8 % tpvec=zeros(1,length(poolcovhist)); % tpvec(ntce(tw,1):ntce(tw,2))=1; % tpvec_ds=zeros(1,length(poolcovhist_ds)); % tpvec_ds(ntce_ds(tw,1):ntce_ds(tw,2))=1; % for cc=1:Nccs % nnspktemp=nanmovmean(squeeze(poolspksqmat(:,cc,tpvec==1))',Nlag,[0 Nspan])'; % poolspksqmat_ds(:,cc,tpvec_ds==1)=nnspktemp(:,1:sum(tpvec_ds==1)); % nnepxtemp=nanmovmean(squeeze(pooleposxmat(:,cc,tpvec==1))',Nlag,Nlag)'; % pooleposxmat_ds(:,cc,tpvec_ds==1)=nnepxtemp(:,1:sum(tpvec_ds==1)); % end % checktps_ds(tpvec_ds==1)=checktps_ds(tpvec_ds==1)+tw; % end vtmax_ds=rmnans(tmax_ds.*vtps_ds);%find(rmnans(vtps_ds)); rtmax_ds=1:length(vtmax_ds); rtmes_ds=arrayfun(@(jj) length(ntce_ds(jj,1):ntce_ds(jj,2)), 1:8); % baseline normalization %poolspksqmat_ds_bln=poolspksqmat_ds-repmat(nanmean(poolspksqmat_ds(:,:,1:floor(400/Nlag)),3),[1 1 Ntps_ds]); %clearvars poolspksqmat_ds % baseline normalization %poolspksqmat_ds_bln=poolspksqmat_ds./repmat(nanmean(poolspksqmat_ds(:,:,1:floor(400/Nlag)),3)+eps,[1 1 Ntps_ds]); %poolspksqmat_ds_bln=poolspksqmat_ds-repmat(nanmean(nanmean(poolspksqmat_ds(:,:,1:floor(400/Nlag)),3),1),[Ntrs12 1 Ntps_ds]); % No baseline normalization poolspksqmat_ds_bln=poolspksqmat_ds; else load pool_all_light.mat % save time at run-time end %% off1time=ntce_ds(2,2)-(19:-1:0); %del1time=ntce_ds(3,2)-(19:-1:0); off2time=ntce_ds(4,2)-(19:-1:0); %del2time=ntce_ds(5,2)-(19:-1:0); %fulldel1time=(ntce_ds(3,1)):ntce_ds(3,2); %fulldel1time=[(ntce_ds(3,1)-46):(ntce_ds(3,1)-7) ntce_ds(3,1):ntce_ds(3,2)]; %fulloff1time=[(ntce_ds(2,1)-46):(ntce_ds(2,1)-7) ntce_ds(2,1):ntce_ds(2,2)]; fulloff1time=[(ntce_ds(2,1)-40):ntce_ds(2,2)]; fulloff1time=fulloff1time(fulloff1time>0); % ensure it is not negative %fulldel2time=(ntce_ds(5,1)):ntce_ds(6,1)-20-2; % due to spikecount/subsampling setup %fulldel2time=[(ntce_ds(5,1)-46):(ntce_ds(5,1)-7) ntce_ds(5,1):ntce_ds(6,1)-20-2]; fulloff2time=[(ntce_ds(4,1)-46):(ntce_ds(4,1)-7) ntce_ds(4,1):ntce_ds(4,2)]; %fulloff2time=[(ntce_ds(4,1)-40):ntce_ds(4,2)]; if recomp_shLRalgn if selflag<=2 %%%%%%%%%%%%%% pooleposxmat_shRalgn=nan(size(pooleposxmat_ds_bln)); pooleposxmat_shLalgn=nan(size(pooleposxmat_ds_bln)); poolspksqmat_shRalgn=nan(size(poolspksqmat_ds_bln)); poolspksqmat_shLalgn=nan(size(poolspksqmat_ds_bln)); pooleposxmat_shRonly=nan(size(pooleposxmat_ds_bln)); pooleposxmat_shLonly=nan(size(pooleposxmat_ds_bln)); poolspksqmat_shRonly=nan(size(poolspksqmat_ds_bln)); poolspksqmat_shLonly=nan(size(poolspksqmat_ds_bln)); isdelSR=nan(size(poolspksqmat_ds_bln,1:2)); isdelSL=nan(size(poolspksqmat_ds_bln,1:2)); for cc=1:248 % firstL offer1 - thenL delay2 % Detect saccades ccepx=squeeze(pooleposxmat_ds_bln(:,cc,fulloff1time)); ccspk=squeeze(poolspksqmat_ds_bln(:,cc,fulloff1time)); [nuR,~,~,ishiftsR]=nanmonotonicdrifts_forward_simplified(ccepx(:,40:end),2,0,+1,1,stareflag); % delay2 shiftR trials have sum(xdriftsR,2)>0 isdelSR(:,cc)=double(~isnan(ishiftsR)); ind_delSR=find(~isnan(ishiftsR)); % saccade R times %stR=arrayfun(@(xx) find(xdriftsR(xx,:)==1,1,'first'),isSR); stR=ishiftsR(ind_delSR); for jj=1:length(ind_delSR) shRbins=(ishiftsR(ind_delSR(jj)):length(fulloff1time)); pooleposxmat_shRalgn(ind_delSR(jj),cc,fulloff1time)=[ccepx(ind_delSR(jj),shRbins) nan(1,length(fulloff1time)-sum(shRbins<=length(fulloff1time)))]; poolspksqmat_shRalgn(ind_delSR(jj),cc,fulloff1time)=[ccspk(ind_delSR(jj),shRbins) nan(1,length(fulloff1time)-sum(shRbins<=length(fulloff1time)))]; pooleposxmat_shRonly(ind_delSR(jj),cc,fulloff1time(1)-1+shRbins)=ccepx(ind_delSR(jj),shRbins); poolspksqmat_shRonly(ind_delSR(jj),cc,fulloff1time(1)-1+shRbins)=ccepx(ind_delSR(jj),shRbins); end %figure(); plot(1:76,squeeze(pooleposxmat_shRalgn(:,1,fulloff1time))) %% [nuL,~,~,ishiftsL]=nanmonotonicdrifts_forward_simplified(ccepx(:,40:end),2,0,-1,1,stareflag); % delay2 shiftL trials isdelSL(:,cc)=double(~isnan(ishiftsL)); ind_delSL=find(~isnan(ishiftsL)); % saccade L times %stL=arrayfun(@(xx) find(xdriftsL(xx,:)==1,1,'first'),isSL); stL=ishiftsL(ind_delSL); for jj=1:length(ind_delSL) shLbins=(ishiftsL(ind_delSL(jj)):length(fulloff1time)); pooleposxmat_shLalgn(ind_delSL(jj),cc,fulloff1time)=[ccepx(ind_delSL(jj),shLbins) nan(1,length(fulloff1time)-sum(shLbins<=length(fulloff1time)))]; poolspksqmat_shLalgn(ind_delSL(jj),cc,fulloff1time)=[ccspk(ind_delSL(jj),shLbins) nan(1,length(fulloff1time)-sum(shLbins<=length(fulloff1time)))]; pooleposxmat_shLonly(ind_delSL(jj),cc,fulloff1time(1)-1+shLbins)=ccepx(ind_delSL(jj),shLbins); poolspksqmat_shLonly(ind_delSL(jj),cc,fulloff1time(1)-1+shLbins)=ccepx(ind_delSL(jj),shLbins); end %figure(); plot(1:76,squeeze(pooleposxmat_shLalgn(:,1,fulloff1time))) end %save('pool_del1_shLRalgn.mat','pooleposxmat_shRalgn','poolspksqmat_shRalgn','pooleposxmat_shLalgn','poolspksqmat_shLalgn','-v7.3') elseif selflag>2 %%%%%%%%%%%%%%%%%%%%%%% pooleposxmat_shRalgn=nan(size(pooleposxmat_ds_bln)); pooleposxmat_shLalgn=nan(size(pooleposxmat_ds_bln)); poolspksqmat_shRalgn=nan(size(poolspksqmat_ds_bln)); poolspksqmat_shLalgn=nan(size(poolspksqmat_ds_bln)); pooleposxmat_shRonly=nan(size(pooleposxmat_ds_bln)); pooleposxmat_shLonly=nan(size(pooleposxmat_ds_bln)); poolspksqmat_shRonly=nan(size(poolspksqmat_ds_bln)); poolspksqmat_shLonly=nan(size(poolspksqmat_ds_bln)); isdelSR=nan(size(poolspksqmat_ds_bln,1:2)); isdelSL=nan(size(poolspksqmat_ds_bln,1:2)); for cc=1:248 % firstL offer1 - thenL delay2 % Detect saccades ccepx=squeeze(pooleposxmat_ds_bln(:,cc,fulloff2time)); ccspk=squeeze(poolspksqmat_ds_bln(:,cc,fulloff2time)); [nuR,~,~,ishiftsR]=nanmonotonicdrifts_forward_simplified(ccepx(:,40:end),2,0,+1,1,stareflag); % delay2 shiftR trials have sum(xdriftsR,2)>0 isdelSR(:,cc)=double(~isnan(ishiftsR)); ind_delSR=find(~isnan(ishiftsR)); % saccade R times %stR=arrayfun(@(xx) find(xdriftsR(xx,:)==1,1,'first'),isSR); stR=ishiftsR(ind_delSR); for jj=1:length(ind_delSR) shRbins=(ishiftsR(ind_delSR(jj)):length(fulloff2time)); pooleposxmat_shRalgn(ind_delSR(jj),cc,fulloff2time)=[ccepx(ind_delSR(jj),shRbins) nan(1,length(fulloff2time)-sum(shRbins<=length(fulloff2time)))]; poolspksqmat_shRalgn(ind_delSR(jj),cc,fulloff2time)=[ccspk(ind_delSR(jj),shRbins) nan(1,length(fulloff2time)-sum(shRbins<=length(fulloff2time)))]; pooleposxmat_shRonly(ind_delSR(jj),cc,fulloff2time(1)-1+shRbins)=ccepx(ind_delSR(jj),shRbins); poolspksqmat_shRonly(ind_delSR(jj),cc,fulloff2time(1)-1+shRbins)=ccepx(ind_delSR(jj),shRbins); end [nuL,~,~,ishiftsL]=nanmonotonicdrifts_forward_simplified(ccepx(:,40:end),2,0,-1,1,stareflag); % delay2 shiftL trials isdelSL(:,cc)=double(~isnan(ishiftsL)); ind_delSL=find(~isnan(ishiftsL)); % saccade L times %stL=arrayfun(@(xx) find(xdriftsL(xx,:)==1,1,'first'),isSL); stL=ishiftsL(ind_delSL); for jj=1:length(ind_delSL) shLbins=(ishiftsL(ind_delSL(jj)):length(fulloff2time)); pooleposxmat_shLalgn(ind_delSL(jj),cc,fulloff2time)=[ccepx(ind_delSL(jj),shLbins) nan(1,length(fulloff2time)-sum(shLbins<=length(fulloff2time)))]; poolspksqmat_shLalgn(ind_delSL(jj),cc,fulloff2time)=[ccspk(ind_delSL(jj),shLbins) nan(1,length(fulloff2time)-sum(shLbins<=length(fulloff2time)))]; pooleposxmat_shLonly(ind_delSL(jj),cc,fulloff2time(1)-1+shLbins)=ccepx(ind_delSL(jj),shLbins); poolspksqmat_shLonly(ind_delSL(jj),cc,fulloff2time(1)-1+shLbins)=ccepx(ind_delSL(jj),shLbins); end %disp(cc) end %save('pool_del2_shLRalgn.mat','pooleposxmat_shRalgn','poolspksqmat_shRalgn','pooleposxmat_shLalgn','poolspksqmat_shLalgn','-v7.3') end else if selflag<=2 load pool_del1_shLRalgn.mat elseif selflag>2 load pool_del2_shLRalgn.mat end end %% EXTRA CHECKS: plotting percentiles of eye tracks pooleposxmat_L=nan(Ntrs12,Nccs,Ntps_ds); pooleposxmat_R=nan(Ntrs12,Nccs,Ntps_ds); if any(caseflag==[1 2 4 5]) pooleposxmat_L=pooleposxmat_shLalgn(:,:,:); pooleposxmat_R=pooleposxmat_shRalgn(:,:,:); else dtime=eval(selectedTimes); inddelstL=arrayfun(@(xx) all((rmnans(squeeze(pooleposxmat_ds_bln(xx,1,dtime))))<=0), 1:size(pooleposxmat_ds_bln,1)); inddelstR=arrayfun(@(xx) all((rmnans(squeeze(pooleposxmat_ds_bln(xx,1,dtime))))>=0), 1:size(pooleposxmat_ds_bln,1)); pooleposxmat_L(1:sum(inddelstL),:,dtime)=pooleposxmat_ds_bln(inddelstL,:,dtime); pooleposxmat_R(1:sum(inddelstR),:,dtime)=pooleposxmat_ds_bln(inddelstR,:,dtime); end if selflag <=2 hfig=fullfig(); subplot(1,2,1); title('Shifts to Left screen side'); plot(rtmax_ds,(squeeze(pooleposxmat_L(:,1,vtps_ds==1)))./32558); ylim([-1 1]); plothline(0); xlabel('time after offer1 aligned to gaze shift initiation (ms)'); ylabel('horizontal eye position (normalized)'); box off subplot(1,2,2); title('Shifts to Right screen side'); plot(rtmax_ds,(squeeze(pooleposxmat_R(:,1,vtps_ds==1)))./32558); ylim([-1 1]); plothline(0); xlabel('time after offer1 aligned to gaze shift initiation (ms)'); ylabel('horizontal eye position (normalized)'); box off saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/sample_trials_off_del_shifts_monitor.png']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/sample_trials_off_del_shifts_monitor.fig']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/sample_trials_off_del_shifts_monitor.svg']); fullfig(); subplot(1,2,1); plotmsem(fulloff1time,nanmedian(squeeze(pooleposxmat_L(:,1,fulloff1time))),'k'); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),99), fulloff1time),'color',[1 1 1].*.85); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),01), fulloff1time),'color',[1 1 1].*.85); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),95), fulloff1time),'color',[1 1 1].*.60); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),05), fulloff1time),'color',[1 1 1].*.60); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),90), fulloff1time),'color',[1 1 1].*.45); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),10), fulloff1time),'color',[1 1 1].*.45); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),75), fulloff1time),'color',[1 1 1].*.25); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),25), fulloff1time),'color',[1 1 1].*.25); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),65), fulloff1time),'color',[0 0 1].*.1); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),35), fulloff1time),'color',[1 1 1].*.1); %ylim([-1 1]); plotvline([min(eval(selectedTimes)) max(eval(selectedTimes))]); plothline(0); xlim([min(eval(selectedTimes)) max(eval(selectedTimes))]); subplot(1,2,2); plotmsem(fulloff1time,nanmedian(squeeze(pooleposxmat_R(:,1,fulloff1time))),'k'); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),99), fulloff1time),'color',[1 1 1].*.85); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),01), fulloff1time),'color',[1 1 1].*.85); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),95), fulloff1time),'color',[1 1 1].*.60); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),05), fulloff1time),'color',[1 1 1].*.60); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),90), fulloff1time),'color',[1 1 1].*.45); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),10), fulloff1time),'color',[1 1 1].*.45); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),75), fulloff1time),'color',[1 1 1].*.25); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),25), fulloff1time),'color',[1 1 1].*.25); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),65), fulloff1time),'color',[0 0 1].*.1); plot(fulloff1time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),35), fulloff1time),'color',[1 1 1].*.1); %ylim([-1 1]); plotvline([min(eval(selectedTimes)) max(eval(selectedTimes))]); plothline(0); xlim([min(eval(selectedTimes)) max(eval(selectedTimes))]); else hfig=fullfig(); subplot(1,2,1); title('Shifts to Left screen side'); plot(rtmax_ds,(squeeze(pooleposxmat_L(:,1,vtps_ds==1)))./32558); ylim([-1 1]); plothline(0); xlabel('time after delay2 aligned to gaze shift initiation (ms)'); ylabel('horizontal eye position (normalized)'); box off subplot(1,2,2); title('Shifts to Right screen side'); plot(rtmax_ds,(squeeze(pooleposxmat_R(:,1,vtps_ds==1)))./32558); ylim([-1 1]); plothline(0); xlabel('time after delay2 aligned to gaze shift initiation (ms)'); ylabel('horizontal eye position (normalized)'); box off saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/sample_trials_off_del_shifts_monitor.png']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/sample_trials_off_del_shifts_monitor.fig']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/sample_trials_off_del_shifts_monitor.svg']); %% fullfig(); subplot(1,2,1); plotmsem(fulloff2time,nanmedian(squeeze(pooleposxmat_L(:,1,fulloff2time))),'k'); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),99), fulloff2time),'color',[1 1 1].*.85); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),01), fulloff2time),'color',[1 1 1].*.85); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),95), fulloff2time),'color',[1 1 1].*.60); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),05), fulloff2time),'color',[1 1 1].*.60); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),90), fulloff2time),'color',[1 1 1].*.45); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),10), fulloff2time),'color',[1 1 1].*.45); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),75), fulloff2time),'color',[1 1 1].*.25); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),25), fulloff2time),'color',[1 1 1].*.25); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),65), fulloff2time),'color',[0 0 1].*.1); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_L(:,1,xx))),35), fulloff2time),'color',[1 1 1].*.1);%ylim([-1 1]); plotvline([min(eval(selectedTimes)) max(eval(selectedTimes))]); plothline(0); xlim([min(eval(selectedTimes)) max(eval(selectedTimes))]); subplot(1,2,2); plotmsem(fulloff2time,nanmedian(squeeze(pooleposxmat_R(:,1,fulloff2time))),'k'); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),99), fulloff2time),'color',[1 1 1].*.85); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),01), fulloff2time),'color',[1 1 1].*.85); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),95), fulloff2time),'color',[1 1 1].*.60); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),05), fulloff2time),'color',[1 1 1].*.60); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),90), fulloff2time),'color',[1 1 1].*.45); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),10), fulloff2time),'color',[1 1 1].*.45); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),75), fulloff2time),'color',[1 1 1].*.25); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),25), fulloff2time),'color',[1 1 1].*.25); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),65), fulloff2time),'color',[0 0 1].*.1); plot(fulloff2time,arrayfun(@(xx) prctile(rmnans(squeeze(pooleposxmat_R(:,1,xx))),35), fulloff2time),'color',[1 1 1].*.1);%ylim([-1 1]); plotvline([min(eval(selectedTimes)) max(eval(selectedTimes))]); plothline(0); xlim([min(eval(selectedTimes)) max(eval(selectedTimes))]); end %% % fullfig(); % subplot(1,4,1); % spy(vectorisen(~isnan(poolspksqmat_shLalgn(:,cumsum(nccs),:)),1:2)); % subplot(1,4,2); % spy(vectorisen(~isnan(poolspksqmat_shRalgn(:,cumsum(nccs),:)),1:2)); % subplot(1,4,3); % spy(vectorisen(~isnan(pooleposxmat_shLalgn(:,cumsum(nccs),:)),1:2)); % subplot(1,4,4); % spy(vectorisen(~isnan(pooleposxmat_shRalgn(:,cumsum(nccs),:)),1:2)); % title('Aligned to shifts'); %% hfig=fullfig(); hfig.Position=[0 0 .5 1]; subplot(2,1,1); ylim([0 100]); hold on plot(rtmax_ds,squeeze(sum(~isnan(pooleposxmat_L(:,cumsum(nccs),vtps_ds==1))))./repmat(ntrs',1,sum(vtps_ds>0))*100); hold on for jj=1:8; plot([1 1].*sum(rtmes_ds(1:jj)),get(gca,'YLim'),'k:'); text(sum(rtmes_ds(1:jj-1)),max(get(gca,'YLim')),twLabels{jj}); end subplot(2,1,2); ylim([0 100]); hold on plot(rtmax_ds,squeeze(sum(~isnan(pooleposxmat_R(:,cumsum(nccs),vtps_ds==1))))./repmat(ntrs',1,sum(vtps_ds>0))*100); hold on for jj=1:8; plot([1 1].*sum(rtmes_ds(1:jj)),get(gca,'YLim'),'k:'); text(sum(rtmes_ds(1:jj-1)),max(get(gca,'YLim')),twLabels{jj}); end legend({'subj 1, sn 1','subj 1, sn 2','subj 1, sn 3','subj 1, sn 4','subj 2, sn 1','subj 2, sn 2','subj 2, sn 3','subj 2, sn 4'},'box','off'); switch selflag case 1 subplot(2,1,1); title('Look Left Offer1 & Look Left Delay1'); ylim([0 100]); ylabel('% trials'); xlabel('Delay1 time bins (10 ms)'); subplot(2,1,2); title('Look Left Offer1 & Look Right Delay1'); ylim([0 100]); ylabel('% trials'); xlabel('Delay1 time bins (10 ms)'); case 2 subplot(2,1,1); title('Look Right Offer1 & Look Left Delay1'); ylim([0 100]); ylabel('% trials'); xlabel('Delay1 time bins (10 ms)'); subplot(2,1,2); title('Look Right Offer1 & Look Right Delay1'); ylim([0 100]); ylabel('% trials'); xlabel('Delay1 time bins (10 ms)'); case 3 subplot(2,1,1); title('Look Left Offer2 & Look Left Delay2'); ylim([0 100]); ylabel('% trials'); xlabel('Delay2 time bins (10 ms)'); subplot(2,1,2); title('Look Left Offer2 & Look Right Delay2'); ylim([0 100]); ylabel('% trials'); xlabel('Delay2 time bins (10 ms)'); case 4 subplot(2,1,1); title('Look Right Offer2 & Look Left Delay2'); ylim([0 100]); ylabel('% trials'); xlabel('Delay2 time bins (10 ms)'); subplot(2,1,2); title('Look Right Offer2 & Look Right Delay2'); ylim([0 100]); ylabel('% trials'); xlabel('Delay2 time bins (10 ms)'); end saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/frac_trials_off_del.png']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/frac_trials_off_del.fig']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/frac_trials_off_del.svg']); clearvars pooleposxmat_L pooleposxmat_R %% if any(caseflag==[1 2 4 5]) hfig=fullfig(); hfig.Position=[0 0 .5 1]; subplot(2,1,1); ylim([0 100]); hold on; gg=gca; %plot(1:Ntps_ds,squeeze(sum(~isnan(poolspksqmat_shLonly(:,cumsum(nccs),:))))./repmat(ntrs',1,Ntps_ds)*100); hold on pp=plot(eval(selectedTimes),squeeze(sum(~isnan(poolspksqmat_shLonly(:,cumsum(nccs),eval(selectedTimes)))))./repmat(ntrs',1,length(eval(selectedTimes)))*100); hold on for jj=1:8 plot(1:Ntps_ds,squeeze(sum(~isnan(poolspksqmat_shLonly(:,sum(nccs(1:jj)),:))))./repmat(ntrs(jj)',1,Ntps_ds)*100,':','color',pp(jj).Color); hold on end for jj=1:7; plotvline(ntce_ds(jj,1:2)); text(ntce_ds(jj,1),max(get(gca,'YLim')),twLabels{jj}); end %xlim([189 438]);%xlim([1 Ntps_ds]); subplot(2,1,2); ylim([0 100]); hold on %plot(1:Ntps_ds,squeeze(sum(~isnan(poolspksqmat_shRonly(:,cumsum(nccs),:))))./repmat(ntrs',1,Ntps_ds)*100); hold on pp=plot(eval(selectedTimes),squeeze(sum(~isnan(poolspksqmat_shRonly(:,cumsum(nccs),eval(selectedTimes)))))./repmat(ntrs',1,length(eval(selectedTimes)))*100); hold on for jj=1:8 plot(1:Ntps_ds,squeeze(sum(~isnan(poolspksqmat_shRonly(:,sum(nccs(1:jj)),:))))./repmat(ntrs(jj)',1,Ntps_ds)*100,':','color',pp(jj).Color); hold on end for jj=1:7; plotvline(ntce_ds(jj,1:2)); tt=text(ntce_ds(jj,1),.85*max(get(gca,'YLim')),twLabels{jj},'Rotation',90); end legend({'subj 1, sn 1','subj 1, sn 2','subj 1, sn 3','subj 1, sn 4','subj 2, sn 1','subj 2, sn 2','subj 2, sn 3','subj 2, sn 4'},'box','off'); %xlim([189 438]);%xlim([1 Ntps_ds]); switch selflag case 1 subplot(2,1,1); title('Look Left Offer1 & Look Left Delay1'); ylim([0 100]); ylabel('% trials'); xlabel('Delay1 time bins (10 ms)'); subplot(2,1,2); title('Look Left Offer1 & Look Right Delay1'); ylim([0 100]); ylabel('% trials'); xlabel('Delay1 time bins (10 ms)'); case 2 subplot(2,1,1); title('Look Right Offer1 & Look Left Delay1'); ylim([0 100]); ylabel('% trials'); xlabel('Delay1 time bins (10 ms)'); subplot(2,1,2); title('Look Right Offer1 & Look Right Delay1'); ylim([0 100]); ylabel('% trials'); xlabel('Delay1 time bins (10 ms)'); case 3 subplot(2,1,1); title('Look Left Offer2 & Look Left Delay2'); ylim([0 100]); ylabel('% trials'); xlabel('Delay2 time bins (10 ms)'); subplot(2,1,2); title('Look Left Offer2 & Look Right Delay2'); ylim([0 100]); ylabel('% trials'); xlabel('Delay2 time bins (10 ms)'); case 4 subplot(2,1,1); title('Look Right Offer2 & Look Left Delay2'); ylim([0 100]); ylabel('% trials'); xlabel('Delay2 time bins (10 ms)'); subplot(2,1,2); title('Look Right Offer2 & Look Right Delay2'); ylim([0 100]); ylabel('% trials'); xlabel('Delay2 time bins (10 ms)'); end saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/frac_trials_off_del_shifts.png']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/frac_trials_off_del_shifts.fig']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/frac_trials_off_del_shifts.svg']); end %% Regress EV vs Spiking if recomputelm lmELpv=nan(Nccs,Ntps_ds); lmELpv_shf=nan(Nccs,Ntps_ds,Nshf); lmERpv=nan(Nccs,Ntps_ds); lmERpv_shf=nan(Nccs,Ntps_ds,Nshf); lmELpvLL=nan(Nccs,Ntps_ds); lmELpvLL_shf=nan(Nccs,Ntps_ds,Nshf); lmERpvLL=nan(Nccs,Ntps_ds); lmERpvLL_shf=nan(Nccs,Ntps_ds,Nshf); lmELpvLR=nan(Nccs,Ntps_ds); lmELpvLR_shf=nan(Nccs,Ntps_ds,Nshf); lmERpvLR=nan(Nccs,Ntps_ds); lmERpvLR_shf=nan(Nccs,Ntps_ds,Nshf); lmELR2=nan(Nccs,Ntps_ds); lmELR2_shf=nan(Nccs,Ntps_ds,Nshf); lmERR2=nan(Nccs,Ntps_ds); lmERR2_shf=nan(Nccs,Ntps_ds,Nshf); lmELR2LL=nan(Nccs,Ntps_ds); lmELR2LL_shf=nan(Nccs,Ntps_ds,Nshf); lmERR2LL=nan(Nccs,Ntps_ds); lmERR2LL_shf=nan(Nccs,Ntps_ds,Nshf); lmELR2LR=nan(Nccs,Ntps_ds); lmELR2LR_shf=nan(Nccs,Ntps_ds,Nshf); lmERR2LR=nan(Nccs,Ntps_ds); lmERR2LR_shf=nan(Nccs,Ntps_ds,Nshf); lmELb0=nan(Nccs,Ntps_ds); lmELb0_shf=nan(Nccs,Ntps_ds,Nshf); lmERb0=nan(Nccs,Ntps_ds); lmERb0_shf=nan(Nccs,Ntps_ds,Nshf); lmELb0LL=nan(Nccs,Ntps_ds); lmELb0LL_shf=nan(Nccs,Ntps_ds,Nshf); lmERb0LL=nan(Nccs,Ntps_ds); lmERb0LL_shf=nan(Nccs,Ntps_ds,Nshf); lmELb0LR=nan(Nccs,Ntps_ds); lmELb0LR_shf=nan(Nccs,Ntps_ds,Nshf); lmERb0LR=nan(Nccs,Ntps_ds); lmERb0LR_shf=nan(Nccs,Ntps_ds,Nshf); lmELb1=nan(Nccs,Ntps_ds); lmELb1_shf=nan(Nccs,Ntps_ds,Nshf); lmERb1=nan(Nccs,Ntps_ds); lmERb1_shf=nan(Nccs,Ntps_ds,Nshf); lmELb1LL=nan(Nccs,Ntps_ds); lmELb1LL_shf=nan(Nccs,Ntps_ds,Nshf); lmERb1LL=nan(Nccs,Ntps_ds); lmERb1LL_shf=nan(Nccs,Ntps_ds,Nshf); lmELb1LR=nan(Nccs,Ntps_ds); lmELb1LR_shf=nan(Nccs,Ntps_ds,Nshf); lmERb1LR=nan(Nccs,Ntps_ds); lmERb1LR_shf=nan(Nccs,Ntps_ds,Nshf); lmntrsLL=nan(Nccs,Ntps_ds); lmntrsLR=nan(Nccs,Ntps_ds); lmntrsLL_nn=nan(Nccs,Ntps_ds); lmntrsLR_nn=nan(Nccs,Ntps_ds); lmntrsLL_nn_shLalgn=nan(Nccs,Ntps_ds); lmntrsLR_nn_shRalgn=nan(Nccs,Ntps_ds); for cc=1:Nccs ccoff1rw=pooloffer1rw(:,cc); ccoff2rw=pooloffer2rw(:,cc); ccoff1ev=pooloffer1ev(:,cc); ccoff2ev=pooloffer2ev(:,cc); ccspk=squeeze(poolspksqmat_ds_bln(:,cc,:)); % For linear fit %%%%% ccspk=squeeze(poolspksqmat_ds(:,cc,:)); % For Poisson fit ccepx=squeeze(pooleposxmat_ds_bln(:,cc,:)); %%% shift aligned ccspk_shLalgn=squeeze(poolspksqmat_shLalgn(:,cc,:)); ccspk_shRalgn=squeeze(poolspksqmat_shRalgn(:,cc,:)); ccepx_shLalgn=squeeze(pooleposxmat_shLalgn(:,cc,:)); ccepx_shRalgn=squeeze(pooleposxmat_shRalgn(:,cc,:)); ccisdelSL=isdelSL(:,cc); ccisdelSR=isdelSR(:,cc); % cciso1LLd2LL=iso1LLd2LL(:,cc); % cciso1LLd2LR=iso1LLd2LR(:,cc); %cciso1LLd1LLd2LL=iso1LLd1LLd2LL(:,cc); %cciso1LLd1LLd2LR=iso1LLd1LLd2LR(:,cc); % cciso2LRd2LL=iso2LRd2LL(:,cc); % cciso2LLd2LL=iso2LLd2LL(:,cc); % cciso2LRd2LR=iso2LRd2LR(:,cc); % cciso2LLd2LR=iso2LLd2LR(:,cc); rmallnans=isnan(ccoff1ev); rmtrials=rmallnans;%(rmallnans | ccoff1rw~=1 | ccoff2rw~=1); %ccspk(rmallnans,:)=[]; %ccepx(rmallnans,:)=[]; %ccoff1ev(rmallnans)=[]; %ccoff2ev(rmallnans)=[]; ccspk(rmtrials,:)=[]; ccepx(rmtrials,:)=[]; ccoff1ev(rmtrials)=[]; ccoff2ev(rmtrials)=[]; ccoff1rw(rmtrials)=[]; ccoff2rw(rmtrials)=[]; %cciso2LRd2LL(rmtrials)=[]; %cciso2LRd2LR(rmtrials)=[]; %cciso2LLd2LL(rmtrials)=[]; %cciso2LLd2LR(rmtrials)=[]; %cciso1LLd1LLd2LL(rmtrials)=[]; %cciso1LLd1LLd2LR(rmtrials)=[]; ccisdelSL(rmtrials)=[]; ccisdelSR(rmtrials)=[]; ccspk_shLalgn(rmtrials,:)=[]; ccspk_shRalgn(rmtrials,:)=[]; ccepx_shLalgn(rmtrials,:)=[]; ccepx_shRalgn(rmtrials,:)=[]; ccntrs=size(ccspk,1); % ccspk_shf=nan(Nshf,size(ccspk,1),size(ccspk,2)); %time-shuffle % for jj=1:Nshf %time-shuffle % for ttr=1:ccntrs %time-shuffle % isnn=find(~isnan(ccspk(ttr,:))); %time-shuffle % ccspk_shf(jj,ttr,isnn)=ccspk(ttr,isnn(randperm(length(isnn)))); %time-shuffle % %isvtps=find(vtps_ds==1); %time-shuffle % %ccspk_shf(jj,ttr,isvtps)=ccspk(ttr,isvtps(randperm(length(isvtps)))); %time-shuffle % end %time-shuffle % end %time-shuffle parfor tt=eval(selectedTimes) % delay1 %for tt=eval(selectedTimes) %parfor tt=(ntce_ds(5,1):ntce_ds(5,2)) % delay2 %for tt=1:Ntps_ds warning('off','all') if 1%vtps_ds(tt)==1 % discards low trials times ctspk=squeeze(ccspk(:,tt)); ctepx=squeeze(ccepx(:,tt)); ctspk_shLalgn=squeeze(ccspk_shLalgn(:,tt)); ctspk_shRalgn=squeeze(ccspk_shRalgn(:,tt)); ctlm1=fitlm(ccoff1ev,ctspk); ctlm2=fitlm(ccoff2ev,ctspk); % ctlm1=fitglm(ccoff1ev,ctspk,'linear','Distribution','poisson'); % ctlm2=fitglm(ccoff2ev,ctspk,'linear','Distribution','poisson'); lmELpv(cc,tt)=ctlm1.Coefficients.pValue(2); lmERpv(cc,tt)=ctlm2.Coefficients.pValue(2); lmELR2(cc,tt)=ctlm1.Rsquared.Ordinary; lmERR2(cc,tt)=ctlm2.Rsquared.Ordinary; lmELb0(cc,tt)=ctlm1.Coefficients.Estimate(1); lmERb0(cc,tt)=ctlm2.Coefficients.Estimate(1); lmELb1(cc,tt)=ctlm1.Coefficients.Estimate(2); lmERb1(cc,tt)=ctlm2.Coefficients.Estimate(2); cciso1LL=(nanmean(ccepx(:,off1time),2)<0); %ccisd1LL=(nanmean(ccepx(:,del1time),2)<0); cciso2LL=(nanmean(ccepx(:,off2time),2)<0); %ccisd2LL=(nanmean(ccepx(:,del2time),2)<0); %[nuL,~,~,ishiftsL]=nanmonotonicdrifts_forward_simplified(ccepx(:,fulloff1time),2,0,-1,1,1); %check1=find(~isnan(ishiftsL)); %check0=find((ccisdelSL)); % ccisd1allLL=(arrayfun(@(xx) all((ccepx(xx,fulloff1time(1)-1+find(~isnan(ccepx(xx,fulloff1time)))))<=0),1:size(ccepx,1))); % ccisd1allLR=(arrayfun(@(xx) all((ccepx(xx,fulloff1time(1)-1+find(~isnan(ccepx(xx,fulloff1time)))))>=0),1:size(ccepx,1))); ccisd1allLL=(arrayfun(@(xx) all((ccepx(xx,fulloff1time(41)-1+find(~isnan(ccepx(xx,fulloff1time(41:end))))))<=0),1:size(ccepx,1))); ccisd1allLR=(arrayfun(@(xx) all((ccepx(xx,fulloff1time(41)-1+find(~isnan(ccepx(xx,fulloff1time(41:end))))))>=0),1:size(ccepx,1))); %fullfig(); subplot(1,2,1); plot(fulloff1time,ccepx(ccisd1allLL,fulloff1time)); % subplot(1,2,2); plot(fulloff1time,ccepx(ccisd1allLR,fulloff1time)); % ccisd2allLL=(arrayfun(@(xx) all((ccepx(xx,fulloff2time(1)-1+find(~isnan(ccepx(xx,fulloff2time)))))<=0),1:size(ccepx,1))); % ccisd2allLR=(arrayfun(@(xx) all((ccepx(xx,fulloff2time(1)-1+find(~isnan(ccepx(xx,fulloff2time)))))>=0),1:size(ccepx,1))); ccisd2allLL=(arrayfun(@(xx) all((ccepx(xx,fulloff2time(41)-1+find(~isnan(ccepx(xx,fulloff2time(41:end))))))<=0),1:size(ccepx,1))); ccisd2allLR=(arrayfun(@(xx) all((ccepx(xx,fulloff2time(41)-1+find(~isnan(ccepx(xx,fulloff2time(41:end))))))>=0),1:size(ccepx,1))); %fullfig(); subplot(1,2,1); plot(fulloff2time,ccepx(ccisd2allLL,fulloff2time)); % subplot(1,2,2); plot(fulloff2time,ccepx(ccisd2allLR,fulloff2time)); switch selflag case 1 % OFFER1 LookL and DELAY1 LookL/R %isLL=find((cciso1LL) & (ccepx(:,tt)<0)); %isLR=find((cciso1LL) & (ccepx(:,tt)>0)); %isLL=find((cciso1LL) & (ccisdelSL)); %isLR=find((cciso1LL) & (ccisdelSR)); %isLL=find((ccisdelSL)); %isLR=find((ccisdelSR)); switch caseflag case {1,2} isLL=find((ccisdelSL)); isLR=find((ccisdelSR)); case 3 isLL=find((ccisd1allLL)); isLR=find((ccisd1allLR)); case {4,5} isLL=find((cciso1LL) & (ccisdelSL)); isLR=find((cciso1LL) & (ccisdelSR)); case 6 isLL=find((cciso1LL) & (ccisd1allLL)'); isLR=find((cciso1LL) & (ccisd1allLR)'); end case 2 % OFFER1 LookR and DELAY1 LookL/R %isLL=find((~cciso1LL) & (ccepx(:,tt)<0)); %isLR=find((~cciso1LL) & (ccepx(:,tt)>0)); isLL=find((~cciso1LL) & (ccisdelSL)); isLR=find((~cciso1LL) & (ccisdelSR)); case 3 % OFFER2 LookL and DELAY2 LookL/R %isLL=find((cciso2LL) & (ccepx(:,tt)<0)); %isLR=find((cciso2LL) & (ccepx(:,tt)>0)); isLL=find((cciso2LL) & (ccisdelSL)); isLR=find((cciso2LL) & (ccisdelSR)); case 4 % OFFER2 LookR and DELAY2 LookL/R %isLL=find((~cciso2LL) & (ccepx(:,tt)<0)); %isLR=find((~cciso2LL) & (ccepx(:,tt)>0)); %isLL=find((~cciso2LL) & (ccisdelSL)); %isLR=find((~cciso2LL) & (ccisdelSR)); %isLL=find((ccisdelSL)); %isLR=find((ccisdelSR)); switch caseflag case {1,2} isLL=find((ccisdelSL)); isLR=find((ccisdelSR)); case 3 isLL=find((ccisd2allLL)); isLR=find((ccisd2allLR)); case {4,5} isLL=find((~cciso2LL) & (ccisdelSL)); isLR=find((~cciso2LL) & (ccisdelSR)); case 6 isLL=find((~cciso2LL) & (ccisd2allLL)'); isLR=find((~cciso2LL) & (ccisd2allLR)'); end %isLL=find((~cciso2LL) & (ccisd2allLL)'); %isLR=find((~cciso2LL) & (ccisd2allLR)'); %isLL=find((ccisd2allLL)); %isLR=find((ccisd2allLR)); end %Relevant cases: % Left in offer1 and Right in delay1 % Right in offer2 and Left in delay2 % control cases: % Right in offer1 % Left in offer2 %isLL=find((~cciso1LL) & (ccepx(:,tt)<0)); %isLL=find((cciso1LL) & (ccepx(:,tt)<0)); %isLL=eval(selectedCases{1}); %isLL=find((~cciso2LL) & (ccepx(:,tt)<0)); %isLL=find((cciso2LL) & (ccepx(:,tt)<0)); %isLL=find(cciso1LL & ccisd1LL & cciso2LL & (ccepx(:,tt)<0)); %isLL=find((~cciso1LL) & (~ccisd1LL) & (~cciso2LL) & (ccepx(:,tt)<0)); niLL=length(isLL); if (caseflag==3 || caseflag==6) ctlm1LL=fitlm(ccoff1ev(isLL),ctspk(isLL)); ctlm2LL=fitlm(ccoff2ev(isLL),ctspk(isLL)); else ctlm1LL=fitlm(ccoff1ev(isLL),ctspk_shLalgn(isLL)); ctlm2LL=fitlm(ccoff2ev(isLL),ctspk_shLalgn(isLL)); end % ctlm1LL=fitglm(ccoff1ev(isLL),ctspk(isLL),'linear','Distribution','poisson'); % ctlm2LL=fitglm(ccoff2ev(isLL),ctspk(isLL),'linear','Distribution','poisson'); lmELpvLL(cc,tt)=ctlm1LL.Coefficients.pValue(2); lmERpvLL(cc,tt)=ctlm2LL.Coefficients.pValue(2); lmELR2LL(cc,tt)=ctlm1LL.Rsquared.Ordinary; lmERR2LL(cc,tt)=ctlm2LL.Rsquared.Ordinary; lmELb0LL(cc,tt)=ctlm1LL.Coefficients.Estimate(1); lmERb0LL(cc,tt)=ctlm2LL.Coefficients.Estimate(1); lmELb1LL(cc,tt)=ctlm1LL.Coefficients.Estimate(2); lmERb1LL(cc,tt)=ctlm2LL.Coefficients.Estimate(2); lmntrsLL(cc,tt)=niLL; lmntrsLL_nn(cc,tt)=sum(~isnan(ctspk(isLL))); lmntrsLL_nn_shLalgn(cc,tt)=sum(~isnan(ctspk_shLalgn(isLL))); %isLR=find((~cciso1LL) & (ccepx(:,tt)>0)); %isLR=find((cciso1LL) & (ccepx(:,tt)>0)); %isLR=eval(selectedCases{2}); %isLR=find((~cciso2LL) & (ccepx(:,tt)>0)); %isLR=find((cciso2LL) & (ccepx(:,tt)>0)); %isLR=find(cciso1LL & ccisd1LL & cciso2LL & (ccepx(:,tt)>0)); %isLR=find((~cciso1LL) & (~ccisd1LL) & (~cciso2LL) & (ccepx(:,tt)>0)); niLR=length(isLR); if (caseflag==3 || caseflag==6) ctlm1LR=fitlm(ccoff1ev(isLR),ctspk(isLR)); ctlm2LR=fitlm(ccoff2ev(isLR),ctspk(isLR)); else ctlm1LR=fitlm(ccoff1ev(isLR),ctspk_shRalgn(isLR)); ctlm2LR=fitlm(ccoff2ev(isLR),ctspk_shRalgn(isLR)); end % ctlm1LR=fitglm(ccoff1ev(isLR),ctspk(isLR),'linear','Distribution','poisson'); % ctlm2LR=fitglm(ccoff2ev(isLR),ctspk(isLR),'linear','Distribution','poisson'); lmELpvLR(cc,tt)=ctlm1LR.Coefficients.pValue(2); lmERpvLR(cc,tt)=ctlm2LR.Coefficients.pValue(2); lmELR2LR(cc,tt)=ctlm1LR.Rsquared.Ordinary; lmERR2LR(cc,tt)=ctlm2LR.Rsquared.Ordinary; lmELb0LR(cc,tt)=ctlm1LR.Coefficients.Estimate(1); lmERb0LR(cc,tt)=ctlm2LR.Coefficients.Estimate(1); lmELb1LR(cc,tt)=ctlm1LR.Coefficients.Estimate(2); lmERb1LR(cc,tt)=ctlm2LR.Coefficients.Estimate(2); lmntrsLR(cc,tt)=niLR; lmntrsLR_nn(cc,tt)=sum(~isnan(ctspk(isLR))); lmntrsLR_nn_shRalgn(cc,tt)=sum(~isnan(ctspk_shRalgn(isLR))); for shf=1:Nshf i1shf=randperm(ccntrs); %trial-shuffle i2shf=randperm(ccntrs); %trial-shuffle isshf=randperm(ccntrs); %trial-shuffle ctlm1_shf=fitlm(ccoff1ev(i1shf),ctspk(isshf)); %trial-shuffle ctlm2_shf=fitlm(ccoff2ev(i2shf),ctspk(isshf)); %trial-shuffle % ctlm1_shf=fitglm(ccoff1ev(i1shf),ctspk(isshf),'linear','Distribution','poisson'); % ctlm2_shf=fitglm(ccoff2ev(i2shf),ctspk(isshf),'linear','Distribution','poisson'); %ctlm1_shf=fitlm(ccoff1ev,squeeze(ccspk_shf(shf,:,tt))); %time-shuffle %ctlm2_shf=fitlm(ccoff2ev,squeeze(ccspk_shf(shf,:,tt))); %time-shuffle lmELpv_shf(cc,tt,shf)=ctlm1_shf.Coefficients.pValue(2); lmERpv_shf(cc,tt,shf)=ctlm2_shf.Coefficients.pValue(2); lmELR2_shf(cc,tt,shf)=ctlm1_shf.Rsquared.Ordinary; lmERR2_shf(cc,tt,shf)=ctlm2_shf.Rsquared.Ordinary; lmELb0_shf(cc,tt,shf)=ctlm1_shf.Coefficients.Estimate(1); lmERb0_shf(cc,tt,shf)=ctlm2_shf.Coefficients.Estimate(1); lmELb1_shf(cc,tt,shf)=ctlm1_shf.Coefficients.Estimate(2); lmERb1_shf(cc,tt,shf)=ctlm2_shf.Coefficients.Estimate(2); i1LLshf=isLL(randperm(niLL)); %trial-shuffle i2LLshf=isLL(randperm(niLL)); %trial-shuffle isLLshf=isLL(randperm(niLL)); %trial-shuffle if (caseflag==3 || caseflag==6) ctlm1LL_shf=fitlm(ccoff1ev(i1LLshf),ctspk(isLLshf)); %trial-shuffle ctlm2LL_shf=fitlm(ccoff2ev(i2LLshf),ctspk(isLLshf)); %trial-shuffle else ctlm1LL_shf=fitlm(ccoff1ev(i1LLshf),ctspk_shLalgn(isLLshf)); %trial-shuffle ctlm2LL_shf=fitlm(ccoff2ev(i2LLshf),ctspk_shLalgn(isLLshf)); %trial-shuffle end % ctlm1LL_shf=fitglm(ccoff1ev(i1LLshf),ctspk(isLLshf),'linear','Distribution','poisson'); % ctlm2LL_shf=fitglm(ccoff2ev(i2LLshf),ctspk(isLLshf),'linear','Distribution','poisson'); %ctlm1LL_shf=fitlm(ccoff1ev(isLL),squeeze(ccspk_shf(shf,isLL,tt))); %time-shuffle %ctlm2LL_shf=fitlm(ccoff2ev(isLL),squeeze(ccspk_shf(shf,isLL,tt))); %time-shuffle lmELpvLL_shf(cc,tt,shf)=ctlm1LL_shf.Coefficients.pValue(2); lmERpvLL_shf(cc,tt,shf)=ctlm2LL_shf.Coefficients.pValue(2); lmELR2LL_shf(cc,tt,shf)=ctlm1LL_shf.Rsquared.Ordinary; lmERR2LL_shf(cc,tt,shf)=ctlm2LL_shf.Rsquared.Ordinary; lmELb0LL_shf(cc,tt,shf)=ctlm1LL_shf.Coefficients.Estimate(1); lmERb0LL_shf(cc,tt,shf)=ctlm2LL_shf.Coefficients.Estimate(1); lmELb1LL_shf(cc,tt,shf)=ctlm1LL_shf.Coefficients.Estimate(2); lmERb1LL_shf(cc,tt,shf)=ctlm2LL_shf.Coefficients.Estimate(2); i1LRshf=isLR(randperm(niLR)); %trial-shuffle i2LRshf=isLR(randperm(niLR)); %trial-shuffle isLRshf=isLR(randperm(niLR)); %trial-shuffle if (caseflag==3 || caseflag==6) ctlm1LR_shf=fitlm(ccoff1ev(i1LRshf),ctspk(isLRshf)); %trial-shuffle ctlm2LR_shf=fitlm(ccoff2ev(i2LRshf),ctspk(isLRshf)); %trial-shuffle else ctlm1LR_shf=fitlm(ccoff1ev(i1LRshf),ctspk_shRalgn(isLRshf)); %trial-shuffle ctlm2LR_shf=fitlm(ccoff2ev(i2LRshf),ctspk_shRalgn(isLRshf)); %trial-shuffle end % ctlm1LR_shf=fitglm(ccoff1ev(i1LRshf),ctspk(isLRshf),'linear','Distribution','poisson'); % ctlm2LR_shf=fitglm(ccoff2ev(i2LRshf),ctspk(isLRshf),'linear','Distribution','poisson'); %ctlm1LR_shf=fitlm(ccoff1ev(isLR),squeeze(ccspk_shf(shf,isLR,tt))); %time-shuffle %ctlm2LR_shf=fitlm(ccoff2ev(isLR),squeeze(ccspk_shf(shf,isLR,tt))); %time-shuffle lmELpvLR_shf(cc,tt,shf)=ctlm1LR_shf.Coefficients.pValue(2); lmERpvLR_shf(cc,tt,shf)=ctlm2LR_shf.Coefficients.pValue(2); lmELR2LR_shf(cc,tt,shf)=ctlm1LR_shf.Rsquared.Ordinary; lmERR2LR_shf(cc,tt,shf)=ctlm2LR_shf.Rsquared.Ordinary; lmELb0LR_shf(cc,tt,shf)=ctlm1LR_shf.Coefficients.Estimate(1); lmERb0LR_shf(cc,tt,shf)=ctlm2LR_shf.Coefficients.Estimate(1); lmELb1LR_shf(cc,tt,shf)=ctlm1LR_shf.Coefficients.Estimate(2); lmERb1LR_shf(cc,tt,shf)=ctlm2LR_shf.Coefficients.Estimate(2); end end warning('on','all') end disp([sprintf('%s',datetime('now','Format','HH:mm')) ' - done: ' num2str(cc) '/' num2str(Nccs) ', ' num2str(cc/Nccs.*100) '%']); end save([most_recent_folder 'fitlmstats_span_' num2str(Nspan) 'ms_lag_' num2str(Nlag) 'ms_' date '.mat'],'lmE*','lmntr*'); else %load(['fitlmstats_span_' num2str(Nspan) 'ms_lag_' num2str(Nlag) 'ms_13-May-2022.mat']); %load(['fitlmstats_span_' num2str(Nspan) 'ms_lag_' num2str(Nlag) 'ms_26-May-2022-BEST.mat']); %load('fitlmstats_span_100ms_lag_10ms_21-May-2022.mat'); %load('fitlmstats_span_250ms_lag_10ms_01-Jul-2022.mat'); %load('fitlmstats_span_150ms_lag_10ms_02-Jul-2022.mat'); %load('fitlmstats_span_200ms_lag_10ms_24-Jun-2022_TIMESHUFF.mat'); %load('fitlmstats_span_200ms_lag_10ms_13-Jul-2022.mat'); %load(['fitlmstats_span_' num2str(Nspan) 'ms_lag_' num2str(Nlag) 'ms_06-Sep-2022.mat']); end %% %fullfig(); %subplot(2,1,1); %plot(rtmax_ds,rmnans((lmntrsLL(:,vtps_ds==1)./(lmntrsLL(:,vtps_ds==1)+lmntrsLR(:,vtps_ds==1)))',1)); %title('Look Left fraction of trials'); %subplot(2,1,2); %plot(rtmax_ds,rmnans((lmntrsLR(:,vtps_ds==1)./(lmntrsLL(:,vtps_ds==1)+lmntrsLR(:,vtps_ds==1)))',1)); %title('Look Right fraction of trials'); %% %% hfig=fullfig(); hfig.Position=[0 0 .5 1]; if any(caseflag==[1 2 4 5]) subplot(2,1,1); plot(rtmax_ds,(lmntrsLL_nn_shLalgn(cumsum(nccs),vtps_ds==1))./repmat(ntrs',1,nansum(vtps_ds)).*100); subplot(2,1,2); plot(rtmax_ds,(lmntrsLR_nn_shRalgn(cumsum(nccs),vtps_ds==1))./repmat(ntrs',1,nansum(vtps_ds)).*100); else subplot(2,1,1); plot(rtmax_ds,(lmntrsLL_nn(cumsum(nccs),vtps_ds==1))./repmat(ntrs',1,nansum(vtps_ds)).*100); subplot(2,1,2); plot(rtmax_ds,(lmntrsLR_nn(cumsum(nccs),vtps_ds==1))./repmat(ntrs',1,nansum(vtps_ds)).*100); end switch selflag case 1 subplot(2,1,1); title('Look Left Offer1 & Look Left Delay1'); ylim([0 100]); ylabel('% trials'); xlabel('Delay1 time bins (10 ms)'); subplot(2,1,2); title('Look Left Offer1 & Look Right Delay1'); ylim([0 100]); ylabel('% trials'); xlabel('Delay1 time bins (10 ms)'); case 2 subplot(2,1,1); title('Look Right Offer1 & Look Left Delay1'); ylim([0 100]); ylabel('% trials'); xlabel('Delay1 time bins (10 ms)'); subplot(2,1,2); title('Look Right Offer1 & Look Right Delay1'); ylim([0 100]); ylabel('% trials'); xlabel('Delay1 time bins (10 ms)'); case 3 subplot(2,1,1); title('Look Left Offer2 & Look Left Delay2'); ylim([0 100]); ylabel('% trials'); xlabel('Delay2 time bins (10 ms)'); subplot(2,1,2); title('Look Left Offer2 & Look Right Delay2'); ylim([0 100]); ylabel('% trials'); xlabel('Delay2 time bins (10 ms)'); case 4 subplot(2,1,1); title('Look Right Offer2 & Look Left Delay2'); ylim([0 100]); ylabel('% trials'); xlabel('Delay2 time bins (10 ms)'); subplot(2,1,2); title('Look Right Offer2 & Look Right Delay2'); ylim([0 100]); ylabel('% trials'); xlabel('Delay2 time bins (10 ms)'); end hl=legend(strsplit(sprintf('session %d-',1:8),'-')); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/frac_trials_off_del_selected.png']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/frac_trials_off_del_selected.fig']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/frac_trials_off_del_selected.svg']); %% %cmp=linspecer(14); %o1col=cmp(1,:); o2col=cmp(2,:); o1LLcol=cmp(9,:); o1LRcol=cmp(11,:); o2LLcol=cmp(10,:); o2LRcol=cmp(12,:); %% Plot colors o1col = [ 55 188 52]/255; o2col = [ 55 131 200]/255; o3col = [121 121 121]/255; o1LLcol=[ 50 148 48]/255; o2LLcol=[ 55 97 135]/255; o3LLcol=[ 43 43 43]/255; o1LRcol=[135 215 133]/255; o2LRcol=[144 187 226]/255; o3LRcol=[168 168 168]/255; o1LLcol=[212 87 28]/255; o1LRcol=[251 179 144]/255; o2LLcol=[119 30 152]/255; o2LRcol=[185 118 210]/255; %% lmELpvd=double(lmELpv(:,vtps_ds==1)<0.05); lmERpvd=double(lmERpv(:,vtps_ds==1)<0.05); lmELpvdLL=double(lmELpvLL(:,vtps_ds==1)<0.05); lmERpvdLL=double(lmERpvLL(:,vtps_ds==1)<0.05); lmELpvdLR=double(lmELpvLR(:,vtps_ds==1)<0.05); lmERpvdLR=double(lmERpvLR(:,vtps_ds==1)<0.05); lmELpvd_shf=squeeze(double(lmELpv_shf(:,vtps_ds==1,:)<0.05)); lmERpvd_shf=squeeze(double(lmERpv_shf(:,vtps_ds==1,:)<0.05)); lmELpvdLL_shf=squeeze(double(lmELpvLL_shf(:,vtps_ds==1,:)<0.05)); lmERpvdLL_shf=squeeze(double(lmERpvLL_shf(:,vtps_ds==1,:)<0.05)); lmELpvdLR_shf=squeeze(double(lmELpvLR_shf(:,vtps_ds==1,:)<0.05)); lmERpvdLR_shf=squeeze(double(lmERpvLR_shf(:,vtps_ds==1,:)<0.05)); hfig=fullfig(); subplot(3,1,1); plotcmapdots([o1col; o2col]); hold on runlength(nanmean(lmELpvd),squeeze(nanmean(lmELpvd_shf)),1,rtmax_ds,o1col,0.005); runlength(nanmean(lmERpvd),squeeze(nanmean(lmERpvd_shf)),1,rtmax_ds,o2col,0.002); for jj=1:8; plot([1 1].*sum(rtmes_ds(1:jj)),[0 0.2],'k:'); text(sum(rtmes_ds(1:jj-1)),.21,twLabels{jj}); end hl=legend({'E(L)','E(R)'}); ylim([0 0.2]); box(hl,'on'); xlabel('time bins (10 ms)'); ylabel('% signif. cells'); subplot(3,1,2); plotcmapdots([o1LLcol; o1LRcol]); hold on runlength(nanmean(lmELpvdLL),squeeze(nanmean(lmELpvdLL_shf)),1,rtmax_ds,o1LLcol,0.005); runlength(nanmean(lmELpvdLR),squeeze(nanmean(lmELpvdLR_shf)),1,rtmax_ds,o1LRcol,0.002); for jj=1:8; plot([1 1].*sum(rtmes_ds(1:jj)),[0 0.2],'k:'); text(sum(rtmes_ds(1:jj-1)),.21,twLabels{jj}); end hl=legend({'E(L), LookL','E(L), LookR'}); ylim([0 0.2]); box(hl,'on'); xlabel('time bins (10 ms)'); ylabel('% signif. cells'); subplot(3,1,3); plotcmapdots([o2LLcol; o2LRcol]); runlength(nanmean(lmERpvdLL),squeeze(nanmean(lmERpvdLL_shf)),1,rtmax_ds,o2LLcol,0.005); runlength(nanmean(lmERpvdLR),squeeze(nanmean(lmERpvdLR_shf)),1,rtmax_ds,o2LRcol,0.002); for jj=1:8; plot([1 1].*sum(rtmes_ds(1:jj)),[0 0.2],'k:'); text(sum(rtmes_ds(1:jj-1)),.21,twLabels{jj}); end hl=legend({'E(R), LookL','E(R), LookR'}); ylim([0 0.2]); box(hl,'on'); xlabel('time bins (10 ms)'); ylabel('% signif. cells'); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/sig_in_time_pv.png']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/sig_in_time_pv.fig']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/sig_in_time_pv.svg']); %% lmELpvd=double(lmELpv(:,:)<0.05); lmERpvd=double(lmERpv(:,:)<0.05); lmELpvdLL=double(lmELpvLL(:,:)<0.05); lmERpvdLL=double(lmERpvLL(:,:)<0.05); lmELpvdLR=double(lmELpvLR(:,:)<0.05); lmERpvdLR=double(lmERpvLR(:,:)<0.05); lmELpvd_shf=squeeze(double(lmELpv_shf(:,:,:)<0.05)); lmERpvd_shf=squeeze(double(lmERpv_shf(:,:,:)<0.05)); lmELpvdLL_shf=squeeze(double(lmELpvLL_shf(:,:,:)<0.05)); lmERpvdLL_shf=squeeze(double(lmERpvLL_shf(:,:,:)<0.05)); lmELpvdLR_shf=squeeze(double(lmELpvLR_shf(:,:,:)<0.05)); lmERpvdLR_shf=squeeze(double(lmERpvLR_shf(:,:,:)<0.05)); hfig=fullfig(); subplot(3,1,1); plotcmapdots([o1col; o2col]); runlength(nanmean(lmELpvd),squeeze(nanmean(lmELpvd_shf)),1,1:Ntps_ds,o1col,0.005); runlength(nanmean(lmERpvd),squeeze(nanmean(lmERpvd_shf)),1,1:Ntps_ds,o2col,0.002); ylim([0 0.2]); for jj=1:7; plotvline(ntce_ds(jj,1:2)); text(ntce_ds(jj,1),max(get(gca,'YLim')),twLabels{jj}); end hl=legend({'E(L)','E(R)'}); box(hl,'on'); box off; if selflag<=2; xlim(fulloff1time([1 end])); else; xlim(fulloff2time([1 end])); end xlabel('time bins (10 ms)'); ylabel('% signif. cells'); subplot(3,1,2); plotcmapdots([o1LLcol; o1LRcol]); runlength(nanmean(lmELpvdLL),squeeze(nanmean(lmELpvdLL_shf)),1,1:Ntps_ds,o1LLcol,0.005); runlength(nanmean(lmELpvdLR),squeeze(nanmean(lmELpvdLR_shf)),1,1:Ntps_ds,o1LRcol,0.002); ylim([0 0.2]); for jj=1:7; plotvline(ntce_ds(jj,1:2)); text(ntce_ds(jj,1),max(get(gca,'YLim')),twLabels{jj}); end hl=legend({'E(L), LookL','E(L), LookR'}); box(hl,'on'); box off; if selflag<=2; xlim(fulloff1time([1 end])); else; xlim(fulloff2time([1 end])); end xlabel('time bins (10 ms)'); ylabel('% signif. cells'); subplot(3,1,3); plotcmapdots([o2LLcol; o2LRcol]); runlength(nanmean(lmERpvdLL),squeeze(nanmean(lmERpvdLL_shf)),1,1:Ntps_ds,o2LLcol,0.005); runlength(nanmean(lmERpvdLR),squeeze(nanmean(lmERpvdLR_shf)),1,1:Ntps_ds,o2LRcol,0.002); ylim([0 0.2]); for jj=1:7; plotvline(ntce_ds(jj,1:2)); text(ntce_ds(jj,1),max(get(gca,'YLim')),twLabels{jj}); end hl=legend({'E(R), LookL','E(R), LookR'}); box(hl,'on'); box off; if selflag<=2; xlim(fulloff1time([1 end])); else; xlim(fulloff2time([1 end])); end xlabel('time bins (10 ms)'); ylabel('% signif. cells'); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/sig_in_time_pv_deltime.png']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/sig_in_time_pv_deltime.fig']); saveas(hfig,[most_recent_folder 'span' num2str(Nspan) 'ms_lag' num2str(Nlag) 'ms/sig_in_time_pv_deltime.svg']); end end