function [ latTimes, lsqCurveTimes, lsqFittedCurve, lsqFittedParam, lsqCurveFitErr] = computeLatencies_offset( MuaeData, MuaeTimes, lsqTimeRes ) % COMPUTE LATENCY function written by Demetrio Ferro demetrio.ferro@iit.it % Based on (Roelfsema, Tolboom, Khayat, Neuron 2007). % developed for (Ferro, van Kempen, Boyd, Panzeri, Thiele, PNAS 2021) % % The function computes Latency indices base don MUAes fitted by cumulative % gaussian function with 5 (degrees of freedom) parameters (mu, sigma, alpha, c, d). % The best fit is assigned based on Least Squares (LS) of iterative estimation. % % Inputs % MuaeData [NxT] Multi-channel (N channels) MUAes in time (T points) % MuaeTimes [1xT] Timestamps of MUAe recordings (T points) % lsqTimeRes [1x1] Resolution of time series for Latency estimation % % Outputs % latTimes [1xN] Latency indices at t*:={f(t*)=1/3*max(f(t)),t in MuaeTimes} % lsqCurveTimes [1x(T*lsqTimeRes)] Timestamps of fitted curves % lsqFittedCurve [Nx(T*lsqTimeRes)] Fitted curves at LS parameters % lsqFittedParam [Nx5] LS parameters % lsqFitErr [1xN] LS error of the fit %MuaeData=yt; %MuaeTimes=ts*1e3; %lsqTimeRes=10; [N,T]=size(MuaeData); latTimes=zeros(1,N); lsqCurveTimes=linspace(MuaeTimes(1),MuaeTimes(end),ceil(T*lsqTimeRes)); lsqFittedCurve=zeros(N,ceil(T*lsqTimeRes)); lsqFittedParam=zeros(N,6); lsqCurveFitErr=zeros(1,N); % LsqParam0 = [mu, sigma, alpha, c, d, y_off]; % LsqParam0 is the starting point for the fitting routine; lsqParam0=[0 0 0 0 0 0]; % starts with naive values for V1; % Ex-Gaussian Function to fit exGfunToFit = @(p,tdata)(p(5)*exp(p(1)*p(3)+0.5*p(2)^2*p(3)^2-p(3)*tdata)... .*normcdf(tdata,p(1)+p(2)^2*p(3),p(2))... +p(4)*normcdf(tdata,p(1),p(2))+p(6)); movMeanResolution=5; mu0ValuesOrigVec=MuaeTimes; options = optimoptions('lsqcurvefit','Display','off'); % LOOP OVER CHANNELS for ch=1:N MuaeDataMovMean=movmean(MuaeData(ch,:),movMeanResolution); IntMuaeDataMM=interp1(MuaeTimes,MuaeDataMovMean,mu0ValuesOrigVec); DiffMuaeDataMM=diff([IntMuaeDataMM IntMuaeDataMM(end)]); % EMPIRICAL SETTING: TAKE ONLY POSITIVE SLOPES TO SPEED UP mu0ValuesVec=mu0ValuesOrigVec(DiffMuaeDataMM>=0); %.2*min(DiffMuaeDataMM)); %MuaeDataMovMean(1) lsqMuErrMovMean=-1*ones(1,length(mu0ValuesVec)); lsqFittedParamMovMean=zeros(length(mu0ValuesVec),6); % ATTENTION: FIT THE MOVMEAN THEN USE THE MIN MSE PARAMETERS for muIdx=1:length(mu0ValuesVec) lsqParam0(1)=mu0ValuesVec(muIdx); lsqParam0(6)=MuaeDataMovMean(1); try lsqFittedParamMovMean(muIdx,:)=lsqcurvefit(exGfunToFit,lsqParam0,MuaeTimes,MuaeDataMovMean,[],[],options); lsqMuErrMovMean(muIdx)=norm(feval(exGfunToFit,lsqFittedParamMovMean(muIdx,:),MuaeTimes)-MuaeData(ch,:)); catch warning('lsqcurvefit does not converge for the parameters chosen!'); end end % Remove non-tested mu parameters lsqMuErrMovMean(lsqMuErrMovMean==-1)=[]; lsqFittedParamMovMean(lsqMuErrMovMean==-1)=[]; [~,lsqMinMuErrIdxMovMean]=min(lsqMuErrMovMean); lsqFittedCurve(ch,:)=feval(exGfunToFit,lsqFittedParamMovMean(lsqMinMuErrIdxMovMean,:),lsqCurveTimes); lsqCurveFitErr(ch)=norm(interp1(lsqCurveTimes,lsqFittedCurve(ch,:),MuaeTimes)-MuaeData(ch,:)); lsqFittedParam(ch,:)=lsqFittedParamMovMean(lsqMinMuErrIdxMovMean,:); latIndex=find(lsqFittedCurve(ch,:)>=(lsqFittedParam(ch,6)+1/3*max(lsqFittedCurve(ch,:)-lsqFittedParam(ch,6))),1,'first'); if ~isempty(latIndex) latTimes(ch)=lsqCurveTimes(latIndex); else latTimes(ch)=NaN; end end end